NazaraEngine/tests/ComputeParticlesTest/main.cpp

582 lines
19 KiB
C++

#include <Nazara/Core.hpp>
#include <Nazara/Math.hpp>
#include <Nazara/Platform.hpp>
#include <Nazara/Renderer.hpp>
#include <NZSL/FilesystemModuleResolver.hpp>
#include <NZSL/LangWriter.hpp>
#include <NZSL/Parser.hpp>
#include <NZSL/Math/FieldOffsets.hpp>
#include <Nazara/Utility.hpp>
#include <array>
#include <chrono>
#include <iostream>
#include <random>
#include <thread>
NAZARA_REQUEST_DEDICATED_GPU()
struct SpriteRenderData
{
std::shared_ptr<Nz::RenderBuffer> vertexBuffer;
std::shared_ptr<Nz::ShaderBinding> shaderBinding;
};
struct SpriteRenderPipeline
{
std::shared_ptr<Nz::RenderPipeline> pipeline;
std::shared_ptr<Nz::RenderPipelineLayout> pipelineLayout;
};
std::shared_ptr<Nz::ComputePipeline> BuildComputePipeline(Nz::RenderDevice& device, std::shared_ptr<Nz::RenderPipelineLayout> pipelineLayout, std::shared_ptr<nzsl::ModuleResolver> moduleResolver);
SpriteRenderPipeline BuildSpritePipeline(Nz::RenderDevice& device);
SpriteRenderData BuildSpriteData(Nz::RenderDevice& device, const SpriteRenderPipeline& pipelineData, const Nz::Rectf& textureRect, const Nz::Vector2f& screenSize, const Nz::RenderBufferView& buffer, const Nz::RenderBufferView& particleBuffer, std::shared_ptr<Nz::Texture> texture, std::shared_ptr<Nz::TextureSampler> sampler);
std::shared_ptr<Nz::Texture> GenerateSpriteTexture(Nz::RenderDevice& device, std::shared_ptr<nzsl::ModuleResolver> moduleResolver);
int main()
{
Nz::Vector2ui windowSize = { 1280, 720 };
std::filesystem::path resourceDir = "assets/examples";
if (!std::filesystem::is_directory(resourceDir) && std::filesystem::is_directory("../.." / resourceDir))
resourceDir = "../.." / resourceDir;
Nz::Renderer::Config rendererConfig;
std::cout << "Run using Vulkan? (y/n)" << std::endl;
if (std::getchar() == 'y')
rendererConfig.preferredAPI = Nz::RenderAPI::Vulkan;
else
rendererConfig.preferredAPI = Nz::RenderAPI::OpenGL;
Nz::Modules<Nz::Renderer> nazara(rendererConfig);
Nz::RenderDeviceFeatures enabledFeatures;
enabledFeatures.computeShaders = true;
enabledFeatures.storageBuffers = true;
enabledFeatures.textureReadWrite = true;
std::shared_ptr<Nz::RenderDevice> device = Nz::Renderer::Instance()->InstanciateRenderDevice(0, enabledFeatures);
nzsl::FieldOffsets particleLayout(nzsl::StructLayout::Std140);
std::size_t particleColorOffset = particleLayout.AddField(nzsl::StructFieldType::Float3);
std::size_t particlePosOffset = particleLayout.AddField(nzsl::StructFieldType::Float2);
std::size_t particleVelOffset = particleLayout.AddField(nzsl::StructFieldType::Float2);
std::size_t particleSize = particleLayout.GetAlignedSize();
constexpr std::size_t maxParticleCount = 10'000;
constexpr std::size_t initialParticleCount = maxParticleCount;
nzsl::FieldOffsets bufferLayout(nzsl::StructLayout::Std140);
std::size_t particleCountOffset = bufferLayout.AddField(nzsl::StructFieldType::UInt1);
std::size_t particlesOffset = bufferLayout.AddStructArray(particleLayout, maxParticleCount);
std::size_t bufferSize = bufferLayout.GetAlignedSize();
std::vector<Nz::UInt8> particleBufferInitialData(bufferSize);
Nz::AccessByOffset<Nz::UInt32&>(particleBufferInitialData.data(), particleCountOffset) = initialParticleCount;
std::mt19937 rand(std::random_device{}());
std::uniform_real_distribution<float> colorDis(0.f, 1.f);
std::uniform_real_distribution<float> posXDis(0.f, float(windowSize.x));
std::uniform_real_distribution<float> posYDis(0.f, float(windowSize.y));
std::uniform_real_distribution<float> velDis(-20.f, 20.f);
for (std::size_t i = 0; i < initialParticleCount; ++i)
{
std::size_t baseOffset = particlesOffset + particleSize * i;
Nz::AccessByOffset<Nz::Vector3f&>(particleBufferInitialData.data(), baseOffset + particleColorOffset) = Nz::Vector3f(colorDis(rand), colorDis(rand), colorDis(rand));
//Nz::AccessByOffset<Nz::Vector3f&>(particleBufferInitialData.data(), baseOffset + particleColorOffset) = (i > 2500) ? Nz::Vector3f(0.f, 1.f, 0.f) : Nz::Vector3f(0.f, 0.f, 1.f);
Nz::AccessByOffset<Nz::Vector2f&>(particleBufferInitialData.data(), baseOffset + particlePosOffset) = Nz::Vector2f(posXDis(rand), posYDis(rand));
Nz::AccessByOffset<Nz::Vector2f&>(particleBufferInitialData.data(), baseOffset + particleVelOffset) = Nz::Vector2f(velDis(rand), velDis(rand));
}
std::shared_ptr<Nz::RenderBuffer> particleBuffer = device->InstantiateBuffer(Nz::BufferType::Storage, bufferSize, Nz::BufferUsage::DeviceLocal, particleBufferInitialData.data());
nzsl::FieldOffsets sceneBufferLayout(nzsl::StructLayout::Std140);
std::size_t deltaTimeOffset = sceneBufferLayout.AddField(nzsl::StructFieldType::Float1);
std::size_t mousePosOffset = sceneBufferLayout.AddField(nzsl::StructFieldType::Float2);
std::size_t sceneBufferSize = sceneBufferLayout.GetAlignedSize();
std::shared_ptr<Nz::RenderBuffer> sceneDataBuffer = device->InstantiateBuffer(Nz::BufferType::Uniform, sceneBufferSize, Nz::BufferUsage::DeviceLocal | Nz::BufferUsage::Dynamic);
// Compute part
Nz::RenderPipelineLayoutInfo computePipelineLayoutInfo;
computePipelineLayoutInfo.bindings.assign({
{
0, 0, 1,
Nz::ShaderBindingType::StorageBuffer,
nzsl::ShaderStageType::Compute
},
{
0, 1, 1,
Nz::ShaderBindingType::UniformBuffer,
nzsl::ShaderStageType::Compute
}
});
std::shared_ptr<Nz::RenderPipelineLayout> computePipelineLayout = device->InstantiateRenderPipelineLayout(computePipelineLayoutInfo);
std::shared_ptr<nzsl::FilesystemModuleResolver> moduleResolver = std::make_shared<nzsl::FilesystemModuleResolver>();
moduleResolver->RegisterModuleDirectory(resourceDir / "../shaders/", true);
std::shared_ptr<Nz::ComputePipeline> computePipeline;
try
{
computePipeline = BuildComputePipeline(*device, computePipelineLayout, moduleResolver);
}
catch (const std::exception& e)
{
std::cerr << "failed to compile compute shaders: " << e.what() << std::endl;
std::abort();
}
std::atomic_bool hasNewPipeline = false;
std::shared_ptr<Nz::ShaderBinding> computeBinding = computePipelineLayout->AllocateShaderBinding(0);
computeBinding->Update({
{
0,
Nz::ShaderBinding::StorageBufferBinding {
particleBuffer.get(), 0, bufferSize
}
},
{
1,
Nz::ShaderBinding::UniformBufferBinding {
sceneDataBuffer.get(), 0, sceneBufferSize
}
}
});
moduleResolver->OnModuleUpdated.Connect([&](nzsl::ModuleResolver*, const std::string& moduleName)
{
std::cout << moduleName << " has been updated" << std::endl;
hasNewPipeline = true;
});
std::string windowTitle = "Compute test";
Nz::RenderWindow window;
if (!window.Create(device, Nz::VideoMode(windowSize.x, windowSize.y, 32), windowTitle))
{
std::cout << "Failed to create Window" << std::endl;
std::abort();
}
constexpr float textureSize = 512.f;
float margin = (windowSize.y - textureSize) * 0.5f;
nzsl::FieldOffsets viewerLayout(nzsl::StructLayout::Std140);
std::size_t projectionMatrixOffset = viewerLayout.AddMatrix(nzsl::StructFieldType::Float1, 4, 4, true);
std::size_t viewerBufferSize = viewerLayout.GetAlignedSize();
std::vector<Nz::UInt8> viewerBufferInitialData(viewerBufferSize);
Nz::AccessByOffset<Nz::Matrix4f&>(viewerBufferInitialData.data(), projectionMatrixOffset) = Nz::Matrix4f::Ortho(0.f, windowSize.x, 0.f, windowSize.y);
std::shared_ptr<Nz::RenderBuffer> uniformBuffer = device->InstantiateBuffer(Nz::BufferType::Uniform, viewerBufferSize, Nz::BufferUsage::DeviceLocal, viewerBufferInitialData.data());
std::shared_ptr<Nz::Texture> texture = GenerateSpriteTexture(*device, moduleResolver);
std::shared_ptr<Nz::TextureSampler> textureSampler = device->InstantiateTextureSampler({});
SpriteRenderPipeline spriteRenderPipeline = BuildSpritePipeline(*device);
SpriteRenderData spriteRenderData1 = BuildSpriteData(*device, spriteRenderPipeline, Nz::Rectf(-8.f, -8.f, 16.f, 16.f), Nz::Vector2f(windowSize), uniformBuffer.get(), particleBuffer.get(), texture, textureSampler);
Nz::MillisecondClock fpsClock;
Nz::HighPrecisionClock updateClock;
unsigned int fps = 0;
while (window.IsOpen())
{
window.ProcessEvents();
Nz::RenderFrame frame = window.AcquireFrame();
if (!frame)
{
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue;
}
if (hasNewPipeline)
{
try
{
hasNewPipeline = false;
std::shared_ptr<Nz::ComputePipeline> newComputePipeline = BuildComputePipeline(*device, computePipelineLayout, moduleResolver);
frame.PushForRelease(std::move(computePipeline));
computePipeline = std::move(newComputePipeline);
}
catch (const std::exception& e)
{
std::cerr << e.what() << std::endl;
}
}
float deltaTime = updateClock.Restart().AsSeconds();
Nz::UploadPool& uploadPool = frame.GetUploadPool();
const Nz::RenderTarget* windowRT = window.GetRenderTarget();
frame.Execute([&](Nz::CommandBufferBuilder& builder)
{
builder.BeginDebugRegion("Upload scene data", Nz::Color::Yellow());
{
Nz::Vector2i mousePos = Nz::Mouse::GetPosition(window);
auto& allocation = uploadPool.Allocate(sceneBufferSize);
Nz::AccessByOffset<float&>(allocation.mappedPtr, deltaTimeOffset) = deltaTime;
Nz::AccessByOffset<Nz::Vector2f&>(allocation.mappedPtr, mousePosOffset) = Nz::Vector2f(mousePos.x, windowSize.y - mousePos.y);
builder.PreTransferBarrier();
builder.CopyBuffer(allocation, sceneDataBuffer.get());
builder.PostTransferBarrier();
}
builder.EndDebugRegion();
builder.BeginDebugRegion("Compute part", Nz::Color::Blue());
{
builder.BindComputePipeline(*computePipeline);
builder.BindComputeShaderBinding(0, *computeBinding);
builder.Dispatch(maxParticleCount / 64 + 1, 1, 1);
}
builder.EndDebugRegion();
builder.BeginDebugRegion("Main window rendering", Nz::Color::Green());
{
Nz::Recti renderRect(0, 0, window.GetSize().x, window.GetSize().y);
Nz::CommandBufferBuilder::ClearValues clearValues[2];
clearValues[0].color = Nz::Color::Black();
clearValues[1].depth = 1.f;
clearValues[1].stencil = 0;
builder.BeginRenderPass(windowRT->GetFramebuffer(frame.GetFramebufferIndex()), windowRT->GetRenderPass(), renderRect, { clearValues[0], clearValues[1] });
{
builder.SetScissor(Nz::Recti{ 0, 0, int(windowSize.x), int(windowSize.y) });
builder.SetViewport(Nz::Recti{ 0, 0, int(windowSize.x), int(windowSize.y) });
builder.BindRenderPipeline(*spriteRenderPipeline.pipeline);
builder.BindVertexBuffer(0, *spriteRenderData1.vertexBuffer);
builder.BindRenderShaderBinding(0, *spriteRenderData1.shaderBinding);
builder.Draw(4, initialParticleCount);
}
builder.EndRenderPass();
}
builder.EndDebugRegion();
}, Nz::QueueType::Graphics);
frame.Present();
fps++;
if (fpsClock.RestartIfOver(Nz::Time::Second()))
{
window.SetTitle(windowTitle + " - " + Nz::NumberToString(fps) + " FPS");
fps = 0;
}
}
return EXIT_SUCCESS;
}
std::shared_ptr<Nz::ComputePipeline> BuildComputePipeline(Nz::RenderDevice& device, std::shared_ptr<Nz::RenderPipelineLayout> pipelineLayout, std::shared_ptr<nzsl::ModuleResolver> moduleResolver)
{
nzsl::Ast::ModulePtr shaderModule = moduleResolver->Resolve("Compute.Particles");
if (!shaderModule)
{
std::cout << "Failed to parse shader module" << std::endl;
std::abort();
}
nzsl::ShaderWriter::States states;
states.optimize = true;
auto computeShader = device.InstantiateShaderModule(nzsl::ShaderStageType::Compute, *shaderModule, states);
if (!computeShader)
{
std::cout << "Failed to instantiate shader" << std::endl;
std::abort();
}
Nz::ComputePipelineInfo computePipelineInfo;
computePipelineInfo.pipelineLayout = pipelineLayout;
computePipelineInfo.shaderModule = computeShader;
std::shared_ptr<Nz::ComputePipeline> pipeline = device.InstantiateComputePipeline(computePipelineInfo);
if (!pipeline)
{
std::cout << "Failed to instantiate compute pipeline" << std::endl;
std::abort();
}
return pipeline;
}
const char fragVertSource[] = R"(
[nzsl_version("1.0")]
module;
[layout(std140)]
struct Particle
{
color: vec3[f32],
position: vec2[f32],
velocity: vec2[f32]
}
[layout(std140)]
struct ParticleData
{
particle_count: u32,
particles: dyn_array[Particle]
}
struct ViewerData
{
projectionMatrix: mat4[f32]
}
external
{
[binding(0)] viewerData: uniform[ViewerData],
[binding(1)] particleData: storage[ParticleData],
[binding(2)] texture: sampler2D[f32]
}
struct FragOut
{
[location(0)] color: vec4[f32]
}
struct VertIn
{
[location(0)] pos: vec2[f32],
[location(1)] uv: vec2[f32],
[builtin(instance_index)] particle_index: i32
}
struct VertOut
{
[location(0)] uv: vec2[f32],
[location(1)] color: vec3[f32],
[builtin(position)] pos: vec4[f32]
}
[entry(frag)]
fn main(input: VertOut) -> FragOut
{
let output: FragOut;
output.color = vec4[f32](input.color, 1.0) * texture.Sample(input.uv);
return output;
}
[entry(vert)]
fn main(input: VertIn) -> VertOut
{
let output: VertOut;
output.pos = viewerData.projectionMatrix * vec4[f32](input.pos + particleData.particles[input.particle_index].position, 0.0, 1.0);
output.color = particleData.particles[input.particle_index].color;
output.uv = input.uv;
return output;
}
)";
SpriteRenderPipeline BuildSpritePipeline(Nz::RenderDevice& device)
{
try
{
nzsl::Ast::ModulePtr shaderModule = nzsl::Parse(std::string_view(fragVertSource, sizeof(fragVertSource)));
if (!shaderModule)
{
std::cout << "Failed to parse shader module" << std::endl;
std::abort();
}
nzsl::ShaderWriter::States states;
states.optimize = true;
auto fragVertShader = device.InstantiateShaderModule(nzsl::ShaderStageType::Fragment | nzsl::ShaderStageType::Vertex, *shaderModule, states);
if (!fragVertShader)
{
std::cout << "Failed to instantiate shader" << std::endl;
std::abort();
}
std::shared_ptr<Nz::VertexDeclaration> vertexDeclaration = Nz::VertexDeclaration::Get(Nz::VertexLayout::XY_UV);
SpriteRenderPipeline pipelineData;
Nz::RenderPipelineLayoutInfo pipelineLayoutInfo;
pipelineLayoutInfo.bindings.assign({
{
0, 0, 1,
Nz::ShaderBindingType::UniformBuffer,
nzsl::ShaderStageType::Vertex
},
{
0, 1, 1,
Nz::ShaderBindingType::StorageBuffer,
nzsl::ShaderStageType::Vertex | nzsl::ShaderStageType::Fragment
},
{
0, 2, 1,
Nz::ShaderBindingType::Sampler,
nzsl::ShaderStageType::Fragment
}
});
pipelineData.pipelineLayout = device.InstantiateRenderPipelineLayout(std::move(pipelineLayoutInfo));
Nz::RenderPipelineInfo pipelineInfo;
pipelineInfo.blending = true;
pipelineInfo.blend.dstColor = Nz::BlendFunc::One;
pipelineInfo.blend.srcColor = Nz::BlendFunc::One;
pipelineInfo.blend.dstAlpha = Nz::BlendFunc::ConstantAlpha;
pipelineInfo.primitiveMode = Nz::PrimitiveMode::TriangleStrip;
pipelineInfo.pipelineLayout = pipelineData.pipelineLayout;
pipelineInfo.shaderModules.push_back(fragVertShader);
pipelineInfo.vertexBuffers.push_back({
0, vertexDeclaration
});
pipelineData.pipeline = device.InstantiateRenderPipeline(std::move(pipelineInfo));
return pipelineData;
}
catch (const std::exception& e)
{
std::cerr << e.what() << std::endl;
std::abort();
}
}
SpriteRenderData BuildSpriteData(Nz::RenderDevice& device, const SpriteRenderPipeline& pipelineData, const Nz::Rectf& textureRect, const Nz::Vector2f& screenSize, const Nz::RenderBufferView& buffer, const Nz::RenderBufferView& particleBuffer, std::shared_ptr<Nz::Texture> texture, std::shared_ptr<Nz::TextureSampler> sampler)
{
try
{
std::array<Nz::VertexStruct_XY_UV, 4> pos;
pos[0].position = textureRect.GetCorner(Nz::RectCorner::LeftBottom);
pos[0].uv = Nz::Vector2f(0.f, 0.f);
pos[1].position = textureRect.GetCorner(Nz::RectCorner::LeftTop);
pos[1].uv = Nz::Vector2f(0.f, 1.f);
pos[2].position = textureRect.GetCorner(Nz::RectCorner::RightBottom);
pos[2].uv = Nz::Vector2f(1.f, 0.f);
pos[3].position = textureRect.GetCorner(Nz::RectCorner::RightTop);
pos[3].uv = Nz::Vector2f(1.f, 1.f);
SpriteRenderData renderData;
renderData.vertexBuffer = device.InstantiateBuffer(Nz::BufferType::Vertex, 4 * 4 * sizeof(float), Nz::BufferUsage::DeviceLocal, pos.data());
renderData.shaderBinding = pipelineData.pipelineLayout->AllocateShaderBinding(0);
renderData.shaderBinding->Update({
{
0,
Nz::ShaderBinding::UniformBufferBinding {
buffer.GetBuffer(), buffer.GetOffset(), buffer.GetSize()
}
},
{
1,
Nz::ShaderBinding::StorageBufferBinding {
particleBuffer.GetBuffer(), particleBuffer.GetOffset(), particleBuffer.GetSize()
}
},
{
2,
Nz::ShaderBinding::SampledTextureBinding {
texture.get(), sampler.get()
}
}
});
return renderData;
}
catch (const std::exception& e)
{
std::cerr << e.what() << std::endl;
std::abort();
}
}
std::shared_ptr<Nz::Texture> GenerateSpriteTexture(Nz::RenderDevice& device, std::shared_ptr<nzsl::ModuleResolver> moduleResolver)
{
nzsl::Ast::ModulePtr shaderModule = moduleResolver->Resolve("Compute.ParticleTexture");
if (!shaderModule)
{
std::cout << "Failed to parse shader module" << std::endl;
std::abort();
}
nzsl::ShaderWriter::States states;
states.optimize = true;
auto computeShader = device.InstantiateShaderModule(nzsl::ShaderStageType::Compute, *shaderModule, states);
if (!computeShader)
{
std::cout << "Failed to instantiate shader" << std::endl;
std::abort();
}
Nz::RenderPipelineLayoutInfo pipelineLayoutInfo;
pipelineLayoutInfo.bindings.assign({
{
0, 0, 1,
Nz::ShaderBindingType::Texture,
nzsl::ShaderStageType::Compute
}
});
std::shared_ptr<Nz::RenderPipelineLayout> pipelineLayout = device.InstantiateRenderPipelineLayout(std::move(pipelineLayoutInfo));
Nz::ComputePipelineInfo computePipelineInfo;
computePipelineInfo.pipelineLayout = pipelineLayout;
computePipelineInfo.shaderModule = computeShader;
std::shared_ptr<Nz::ComputePipeline> pipeline = device.InstantiateComputePipeline(std::move(computePipelineInfo));
if (!pipeline)
{
std::cout << "Failed to instantiate compute pipeline" << std::endl;
std::abort();
}
// Destination texture
Nz::TextureInfo texParams;
texParams.type = Nz::ImageType::E2D;
texParams.pixelFormat = Nz::PixelFormat::RGBA8;
texParams.width = texParams.height = 256;
texParams.usageFlags = Nz::TextureUsage::ShaderReadWrite | Nz::TextureUsage::ShaderSampling;
std::shared_ptr<Nz::Texture> targetTexture = device.InstantiateTexture(texParams);
Nz::ShaderBindingPtr binding = pipelineLayout->AllocateShaderBinding(0);
binding->Update({
{
0,
Nz::ShaderBinding::TextureBinding {
targetTexture.get(), Nz::TextureAccess::WriteOnly
}
}
});
device.Execute([&](Nz::CommandBufferBuilder& builder)
{
builder.TextureBarrier(Nz::PipelineStage::BottomOfPipe, Nz::PipelineStage::ComputeShader, {}, Nz::MemoryAccess::ShaderWrite, Nz::TextureLayout::Undefined, Nz::TextureLayout::General, *targetTexture);
builder.BindComputePipeline(*pipeline);
builder.BindComputeShaderBinding(0, *binding);
builder.Dispatch(texParams.width / 32, texParams.height / 32, 1);
builder.TextureBarrier(Nz::PipelineStage::ComputeShader, Nz::PipelineStage::FragmentShader, Nz::MemoryAccess::ShaderWrite, Nz::MemoryAccess::ShaderRead, Nz::TextureLayout::General, Nz::TextureLayout::ColorInput, *targetTexture);
}, Nz::QueueType::Compute);
return targetTexture;
}