449 lines
12 KiB
C++
449 lines
12 KiB
C++
// Copyright (C) 2015 Jérôme Leclercq
|
||
// This file is part of the "Nazara Engine - Physics module"
|
||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||
|
||
#include <Nazara/Physics/Geom.hpp>
|
||
#include <Nazara/Physics/PhysWorld.hpp>
|
||
#include <Newton/Newton.h>
|
||
#include <memory>
|
||
#include <Nazara/Physics/Debug.hpp>
|
||
|
||
namespace Nz
|
||
{
|
||
namespace
|
||
{
|
||
PhysGeomRef CreateGeomFromPrimitive(const Primitive& primitive)
|
||
{
|
||
switch (primitive.type)
|
||
{
|
||
case PrimitiveType_Box:
|
||
return BoxGeom::New(primitive.box.lengths, primitive.matrix);
|
||
|
||
case PrimitiveType_Cone:
|
||
return ConeGeom::New(primitive.cone.length, primitive.cone.radius, primitive.matrix);
|
||
|
||
case PrimitiveType_Plane:
|
||
return BoxGeom::New(Vector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
|
||
///TODO: PlaneGeom?
|
||
|
||
case PrimitiveType_Sphere:
|
||
return SphereGeom::New(primitive.sphere.size, primitive.matrix.GetTranslation());
|
||
}
|
||
|
||
NazaraError("Primitive type not handled (0x" + String::Number(primitive.type, 16) + ')');
|
||
return PhysGeomRef();
|
||
}
|
||
}
|
||
|
||
PhysGeom::~PhysGeom()
|
||
{
|
||
for (auto& pair : m_handles)
|
||
NewtonDestroyCollision(pair.second);
|
||
}
|
||
|
||
Boxf PhysGeom::ComputeAABB(const Vector3f& translation, const Quaternionf& rotation, const Vector3f& scale) const
|
||
{
|
||
return ComputeAABB(Matrix4f::Transform(translation, rotation), scale);
|
||
}
|
||
|
||
Boxf PhysGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
|
||
{
|
||
Vector3f min, max;
|
||
|
||
// Si nous n'avons aucune instance, nous en créons une temporaire
|
||
if (m_handles.empty())
|
||
{
|
||
PhysWorld world;
|
||
|
||
NewtonCollision* collision = CreateHandle(&world);
|
||
{
|
||
NewtonCollisionCalculateAABB(collision, offsetMatrix, min, max);
|
||
}
|
||
NewtonDestroyCollision(collision);
|
||
}
|
||
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
|
||
NewtonCollisionCalculateAABB(m_handles.begin()->second, offsetMatrix, min, max);
|
||
|
||
return Boxf(scale * min, scale * max);
|
||
}
|
||
|
||
void PhysGeom::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
|
||
{
|
||
float inertiaMatrix[3];
|
||
float origin[3];
|
||
|
||
// Si nous n'avons aucune instance, nous en créons une temporaire
|
||
if (m_handles.empty())
|
||
{
|
||
PhysWorld world;
|
||
|
||
NewtonCollision* collision = CreateHandle(&world);
|
||
{
|
||
NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
|
||
}
|
||
NewtonDestroyCollision(collision);
|
||
}
|
||
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
|
||
NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);
|
||
|
||
if (inertia)
|
||
inertia->Set(inertiaMatrix);
|
||
|
||
if (center)
|
||
center->Set(origin);
|
||
}
|
||
|
||
float PhysGeom::ComputeVolume() const
|
||
{
|
||
float volume;
|
||
|
||
// Si nous n'avons aucune instance, nous en créons une temporaire
|
||
if (m_handles.empty())
|
||
{
|
||
PhysWorld world;
|
||
|
||
NewtonCollision* collision = CreateHandle(&world);
|
||
{
|
||
volume = NewtonConvexCollisionCalculateVolume(collision);
|
||
}
|
||
NewtonDestroyCollision(collision);
|
||
}
|
||
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
|
||
volume = NewtonConvexCollisionCalculateVolume(m_handles.begin()->second);
|
||
|
||
return volume;
|
||
}
|
||
|
||
NewtonCollision* PhysGeom::GetHandle(PhysWorld* world) const
|
||
{
|
||
auto it = m_handles.find(world);
|
||
if (it == m_handles.end())
|
||
it = m_handles.insert(std::make_pair(world, CreateHandle(world))).first;
|
||
|
||
return it->second;
|
||
}
|
||
|
||
PhysGeomRef PhysGeom::Build(const PrimitiveList& list)
|
||
{
|
||
std::size_t primitiveCount = list.GetSize();
|
||
if (primitiveCount > 1)
|
||
{
|
||
std::vector<PhysGeom*> geoms(primitiveCount);
|
||
|
||
for (unsigned int i = 0; i < primitiveCount; ++i)
|
||
geoms[i] = CreateGeomFromPrimitive(list.GetPrimitive(i));
|
||
|
||
return CompoundGeom::New(&geoms[0], primitiveCount);
|
||
}
|
||
else if (primitiveCount > 0)
|
||
return CreateGeomFromPrimitive(list.GetPrimitive(0));
|
||
else
|
||
return NullGeom::New();
|
||
}
|
||
|
||
bool PhysGeom::Initialize()
|
||
{
|
||
if (!PhysGeomLibrary::Initialize())
|
||
{
|
||
NazaraError("Failed to initialise library");
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void PhysGeom::Uninitialize()
|
||
{
|
||
PhysGeomLibrary::Uninitialize();
|
||
}
|
||
|
||
PhysGeomLibrary::LibraryMap PhysGeom::s_library;
|
||
|
||
/********************************** BoxGeom **********************************/
|
||
|
||
BoxGeom::BoxGeom(const Vector3f& lengths, const Matrix4f& transformMatrix) :
|
||
m_matrix(transformMatrix),
|
||
m_lengths(lengths)
|
||
{
|
||
}
|
||
|
||
BoxGeom::BoxGeom(const Vector3f& lengths, const Vector3f& translation, const Quaternionf& rotation) :
|
||
BoxGeom(lengths, Matrix4f::Transform(translation, rotation))
|
||
{
|
||
}
|
||
|
||
Boxf BoxGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
|
||
{
|
||
Vector3f halfLengths(m_lengths * 0.5f);
|
||
|
||
Boxf aabb(-halfLengths.x, -halfLengths.y, -halfLengths.z, m_lengths.x, m_lengths.y, m_lengths.z);
|
||
aabb.Transform(offsetMatrix, true);
|
||
aabb *= scale;
|
||
|
||
return aabb;
|
||
}
|
||
|
||
float BoxGeom::ComputeVolume() const
|
||
{
|
||
return m_lengths.x * m_lengths.y * m_lengths.z;
|
||
}
|
||
|
||
Vector3f BoxGeom::GetLengths() const
|
||
{
|
||
return m_lengths;
|
||
}
|
||
|
||
GeomType BoxGeom::GetType() const
|
||
{
|
||
return GeomType_Box;
|
||
}
|
||
|
||
NewtonCollision* BoxGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateBox(world->GetHandle(), m_lengths.x, m_lengths.y, m_lengths.z, 0, m_matrix);
|
||
}
|
||
|
||
/******************************** CapsuleGeom ********************************/
|
||
|
||
CapsuleGeom::CapsuleGeom(float length, float radius, const Matrix4f& transformMatrix) :
|
||
m_matrix(transformMatrix),
|
||
m_length(length),
|
||
m_radius(radius)
|
||
{
|
||
}
|
||
|
||
CapsuleGeom::CapsuleGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
|
||
CapsuleGeom(length, radius, Matrix4f::Transform(translation, rotation))
|
||
{
|
||
}
|
||
|
||
float CapsuleGeom::GetLength() const
|
||
{
|
||
return m_length;
|
||
}
|
||
|
||
float CapsuleGeom::GetRadius() const
|
||
{
|
||
return m_radius;
|
||
}
|
||
|
||
GeomType CapsuleGeom::GetType() const
|
||
{
|
||
return GeomType_Capsule;
|
||
}
|
||
|
||
NewtonCollision* CapsuleGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateCapsule(world->GetHandle(), m_radius, m_length, 0, m_matrix);
|
||
}
|
||
|
||
/******************************* CompoundGeom ********************************/
|
||
|
||
CompoundGeom::CompoundGeom(PhysGeom** geoms, std::size_t geomCount)
|
||
{
|
||
m_geoms.reserve(geomCount);
|
||
for (std::size_t i = 0; i < geomCount; ++i)
|
||
m_geoms.emplace_back(geoms[i]);
|
||
}
|
||
|
||
const std::vector<PhysGeomRef>& CompoundGeom::GetGeoms() const
|
||
{
|
||
return m_geoms;
|
||
}
|
||
|
||
GeomType CompoundGeom::GetType() const
|
||
{
|
||
return GeomType_Compound;
|
||
}
|
||
|
||
NewtonCollision* CompoundGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
NewtonCollision* compoundCollision = NewtonCreateCompoundCollision(world->GetHandle(), 0);
|
||
|
||
NewtonCompoundCollisionBeginAddRemove(compoundCollision);
|
||
for (const PhysGeomRef& geom : m_geoms)
|
||
{
|
||
if (geom->GetType() == GeomType_Compound)
|
||
{
|
||
CompoundGeom* compoundGeom = static_cast<CompoundGeom*>(geom.Get());
|
||
for (const PhysGeomRef& piece : compoundGeom->GetGeoms())
|
||
NewtonCompoundCollisionAddSubCollision(compoundCollision, piece->GetHandle(world));
|
||
}
|
||
else
|
||
NewtonCompoundCollisionAddSubCollision(compoundCollision, geom->GetHandle(world));
|
||
}
|
||
NewtonCompoundCollisionEndAddRemove(compoundCollision);
|
||
|
||
return compoundCollision;
|
||
}
|
||
|
||
/********************************* ConeGeom **********************************/
|
||
|
||
ConeGeom::ConeGeom(float length, float radius, const Matrix4f& transformMatrix) :
|
||
m_matrix(transformMatrix),
|
||
m_length(length),
|
||
m_radius(radius)
|
||
{
|
||
}
|
||
|
||
ConeGeom::ConeGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
|
||
ConeGeom(length, radius, Matrix4f::Transform(translation, rotation))
|
||
{
|
||
}
|
||
|
||
float ConeGeom::GetLength() const
|
||
{
|
||
return m_length;
|
||
}
|
||
|
||
float ConeGeom::GetRadius() const
|
||
{
|
||
return m_radius;
|
||
}
|
||
|
||
GeomType ConeGeom::GetType() const
|
||
{
|
||
return GeomType_Cone;
|
||
}
|
||
|
||
NewtonCollision* ConeGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateCone(world->GetHandle(), m_radius, m_length, 0, m_matrix);
|
||
}
|
||
|
||
/****************************** ConvexHullGeom *******************************/
|
||
|
||
ConvexHullGeom::ConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const Matrix4f& transformMatrix) :
|
||
m_matrix(transformMatrix),
|
||
m_tolerance(tolerance),
|
||
m_vertexStride(stride)
|
||
{
|
||
const UInt8* ptr = static_cast<const UInt8*>(vertices);
|
||
|
||
m_vertices.resize(vertexCount);
|
||
if (stride != sizeof(Vector3f))
|
||
{
|
||
for (unsigned int i = 0; i < vertexCount; ++i)
|
||
m_vertices[i] = *reinterpret_cast<const Vector3f*>(ptr + stride*i);
|
||
}
|
||
else // Fast path
|
||
std::memcpy(m_vertices.data(), vertices, vertexCount*sizeof(Vector3f));
|
||
}
|
||
|
||
ConvexHullGeom::ConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const Vector3f& translation, const Quaternionf& rotation) :
|
||
ConvexHullGeom(vertices, vertexCount, stride, tolerance, Matrix4f::Transform(translation, rotation))
|
||
{
|
||
}
|
||
|
||
GeomType ConvexHullGeom::GetType() const
|
||
{
|
||
return GeomType_Compound;
|
||
}
|
||
|
||
NewtonCollision* ConvexHullGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateConvexHull(world->GetHandle(), static_cast<int>(m_vertices.size()), reinterpret_cast<const float*>(m_vertices.data()), sizeof(Vector3f), m_tolerance, 0, m_matrix);
|
||
}
|
||
|
||
/******************************* CylinderGeom ********************************/
|
||
|
||
CylinderGeom::CylinderGeom(float length, float radius, const Matrix4f& transformMatrix) :
|
||
m_matrix(transformMatrix),
|
||
m_length(length),
|
||
m_radius(radius)
|
||
{
|
||
}
|
||
|
||
CylinderGeom::CylinderGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
|
||
CylinderGeom(length, radius, Matrix4f::Transform(translation, rotation))
|
||
{
|
||
}
|
||
|
||
float CylinderGeom::GetLength() const
|
||
{
|
||
return m_length;
|
||
}
|
||
|
||
float CylinderGeom::GetRadius() const
|
||
{
|
||
return m_radius;
|
||
}
|
||
|
||
GeomType CylinderGeom::GetType() const
|
||
{
|
||
return GeomType_Cylinder;
|
||
}
|
||
|
||
NewtonCollision* CylinderGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateCylinder(world->GetHandle(), m_radius, m_length, 0, m_matrix);
|
||
}
|
||
|
||
/********************************* NullGeom **********************************/
|
||
|
||
NullGeom::NullGeom()
|
||
{
|
||
}
|
||
|
||
GeomType NullGeom::GetType() const
|
||
{
|
||
return GeomType_Null;
|
||
}
|
||
|
||
void NullGeom::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
|
||
{
|
||
if (inertia)
|
||
inertia->MakeUnit();
|
||
|
||
if (center)
|
||
center->MakeZero();
|
||
}
|
||
|
||
NewtonCollision* NullGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateNull(world->GetHandle());
|
||
}
|
||
|
||
/******************************** SphereGeom *********************************/
|
||
|
||
SphereGeom::SphereGeom(float radius, const Matrix4f& transformMatrix) :
|
||
SphereGeom(radius, transformMatrix.GetTranslation())
|
||
{
|
||
}
|
||
|
||
SphereGeom::SphereGeom(float radius, const Vector3f& translation, const Quaternionf& rotation) :
|
||
m_position(translation),
|
||
m_radius(radius)
|
||
{
|
||
NazaraUnused(rotation);
|
||
}
|
||
|
||
Boxf SphereGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
|
||
{
|
||
Vector3f size(m_radius * NazaraSuffixMacro(M_SQRT3, f) * scale);
|
||
Vector3f position(offsetMatrix.GetTranslation());
|
||
|
||
return Boxf(position - size, position + size);
|
||
}
|
||
|
||
float SphereGeom::ComputeVolume() const
|
||
{
|
||
return float(M_PI) * m_radius * m_radius * m_radius / 3.f;
|
||
}
|
||
|
||
float SphereGeom::GetRadius() const
|
||
{
|
||
return m_radius;
|
||
}
|
||
|
||
GeomType SphereGeom::GetType() const
|
||
{
|
||
return GeomType_Sphere;
|
||
}
|
||
|
||
NewtonCollision* SphereGeom::CreateHandle(PhysWorld* world) const
|
||
{
|
||
return NewtonCreateSphere(world->GetHandle(), m_radius, 0, Matrix4f::Translate(m_position));
|
||
}
|
||
}
|