NazaraEngine/include/Nazara/Math/Ray.inl

416 lines
11 KiB
C++

// Copyright (C) 2014 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzRay<T>::NzRay(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
{
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
}
template<typename T>
NzRay<T>::NzRay(const T Origin[3], const T Direction[3])
{
Set(Origin, Direction);
}
template<typename T>
NzRay<T>::NzRay(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
NzRay<T>::NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
{
Set(planeOne, planeTwo);
}
template<typename T>
template<typename U>
NzRay<T>::NzRay(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
template<typename U>
NzRay<T>::NzRay(const NzRay<U>& ray)
{
Set(ray);
}
template<typename T>
NzVector3<T> NzRay<T>::GetClosestPoint(const NzVector3<T>& point) const
{
NzVector3<T> delta = point - origin;
T vsq = direction.GetSquaredLength();
T proj = delta.DotProduct(direction);
return GetPoint(proj/vsq);
}
template<typename T>
NzVector3<T> NzRay<T>::GetDirection() const
{
return direction;
}
template<typename T>
NzVector3<T> NzRay<T>::GetOrigin() const
{
return origin;
}
template<typename T>
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
{
return NzVector3<T>(origin + direction * lambda);
}
template<typename T>
bool NzRay<T>::Intersect(const NzBox<T>& box, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
{
// Slab method
#if NAZARA_MATH_SAFE
if (NzNumberEquals(direction.x, F(0.0)) || NzNumberEquals(direction.y, F(0.0)) || NzNumberEquals(direction.z, F(0.0)))
{
NazaraWarning("Division by zero !"); // The algorithm is still correct.
}
#endif
T tx1 = (box.x - origin.x) / direction.x;
T tx2 = (box.x + box.width - origin.x) / direction.x;
T tmin = std::min(tx1, tx2);
T tmax = std::max(tx1, tx2);
T ty1 = (box.y - origin.y) / direction.y;
T ty2 = (box.y + box.height - origin.y) / direction.y;
tmin = std::max(tmin, std::min(ty1, ty2));
tmax = std::min(tmax, std::max(ty1, ty2));
T tz1 = (box.z - origin.z) / direction.z;
T tz2 = (box.z + box.depth - origin.z) / direction.z;
tmin = std::max(tmin, std::min(tz1, tz2));
tmax = std::min(tmax, std::max(tz1, tz2));
if (hitPoint)
hitPoint->Set(GetPoint(tmin));
if (hitSecondPoint)
hitSecondPoint->Set(GetPoint(tmax));
return tmax >= std::max(F(0.0), tmin) && tmin < INFINITY;
}
template<typename T>
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, const NzMatrix4<T>& matrix, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
{
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
T tMin = F(0.0);
T tMax = INFINITY;
NzVector3<T> OBBposition_worldspace(matrix[3].x, matrix[3].y, matrix[3].z);
NzVector3<T> delta = OBBposition_worldspace - origin;
// Test intersection with the 2 planes perpendicular to the OBB's X axis
NzVector3<T> xaxis(matrix[0].x, matrix[0].y, matrix[0].z);
T e = xaxis.DotProduct(delta);
T f = direction.DotProduct(xaxis);
if (std::abs(f) > F(0.0))
{ // Standard case
T t1 = (e + orientedBox.localBox.x) / f; // Intersection with the "left" plane
T t2 = (e + (orientedBox.localBox.x + orientedBox.localBox.width)) / f; // Intersection with the "right" plane
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
// We want t1 to represent the nearest intersection,
// so if it's not the case, invert t1 and t2
if (t1 > t2)
{ T w = t1; t1 = t2; t2 = w; } // swap t1 and t2
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
if (t2 < tMax)
tMax = t2;
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
if (t1 > tMin)
tMin = t1;
// And here's the trick :
// If "far" is closer than "near", then there is NO intersection.
// See the images in the tutorials for the visual explanation.
if (tMax < tMin)
return false;
}
else
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
if (-e + orientedBox.localBox.x > F(0.0) || -e + (orientedBox.localBox.x + orientedBox.localBox.width) < F(0.0))
return false;
// Test intersection with the 2 planes perpendicular to the OBB's Y axis
// Exactly the same thing than above.
NzVector3<T> yaxis(matrix[1].x, matrix[1].y, matrix[1].z);
e = yaxis.DotProduct(delta);
f = direction.DotProduct(yaxis);
if (std::abs(f) > F(0.0))
{
T t1 = (e + orientedBox.localBox.y) / f;
T t2 = (e + (orientedBox.localBox.y + orientedBox.localBox.height)) / f;
if (t1 > t2)
{ T w = t1; t1 = t2; t2 = w; } // swap t1 and t2
if (t2 < tMax)
tMax = t2;
if (t1 > tMin)
tMin = t1;
if (tMin > tMax)
return false;
}
else
if (-e + orientedBox.localBox.y > F(0.0) || -e + (orientedBox.localBox.y + orientedBox.localBox.height) < F(0.0))
return false;
// Test intersection with the 2 planes perpendicular to the OBB's Z axis
// Exactly the same thing than above.
NzVector3<T> zaxis(matrix[2].x, matrix[2].y, matrix[2].z);
e = zaxis.DotProduct(delta);
f = direction.DotProduct(zaxis);
if (std::abs(f) > F(0.0))
{
T t1 = (e + orientedBox.localBox.z) / f;
T t2 = (e + (orientedBox.localBox.z + orientedBox.localBox.depth)) / f;
if (t1 > t2)
{ T w = t1; t1 = t2; t2 = w; } // swap t1 and t2
if (t2 < tMax)
tMax = t2;
if (t1 > tMin)
tMin = t1;
if (tMin > tMax)
return false;
}
else
if (-e + orientedBox.localBox.z > F(0.0) || -e + (orientedBox.localBox.z + orientedBox.localBox.depth) < F(0.0))
return false;
if (hitPoint)
hitPoint->Set(GetPoint(tMin));
if (hitSecondPoint)
hitSecondPoint->Set(GetPoint(tMax));
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzPlane<T>& plane, NzVector3<T> * hitPoint) const
{
T divisor = plane.normal.DotProduct(direction);
if (NzNumberEquals(divisor, F(0.0)))
return false; // perpendicular
if (!hitPoint)
return true;
T lambda = - (plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax+by+cz=d
hitPoint->Set(GetPoint(lambda));
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
{
NzVector3<T> distanceCenterOrigin = sphere.GetPosition() - origin;
T length = distanceCenterOrigin.DotProduct(direction);
if (length < F(0.0))
return false; // ray is perpendicular to the vector origin - center
T squaredDistance = distanceCenterOrigin.GetSquaredLength() - length * length;
T squaredRadius = sphere.GetRadius() * sphere.GetRadius();
if (squaredDistance > squaredRadius)
return false; // if the ray is further than the radius
if (!hitPoint)
return true;
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
if (hitPoint)
hitPoint->Set(GetPoint(length - deltaLambda));
if (hitSecondPoint)
hitSecondPoint->Set(GetPoint(length + deltaLambda));
return true;
}
template<typename T>
NzVector3<T> NzRay<T>::operator*(T lambda) const
{
return GetPoint(lambda);
}
template<typename T>
NzRay<T>& NzRay<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
{
direction = NzVector3<T>(directionX, directionY, directionZ);
origin = NzVector3<T>(X, Y, Z);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const T Origin[3], const T Direction[3])
{
direction = NzVector3<T>(Direction);
origin = NzVector3<T>(Origin);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
{
direction = Direction;
origin = Origin;
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
{
T termOne = planeOne.normal.GetLength();
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
T termFour = planeTwo.normal.GetLength();
T det = termOne * termFour - termTwo * termTwo;
#if NAZARA_MATH_SAFE
if (NzNumberEquals(det, F(0.0)))
{
NzString error("Planes are parallel.");
NazaraError(error);
throw std::domain_error(error);
}
#endif
T invdet = F(1.0) / det;
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
direction = planeOne.normal.CrossProduct(planeTwo.normal);
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
return *this;
}
template<typename T>
template<typename U>
NzRay<T>& NzRay<T>::Set(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
{
direction = NzVector3<T>(Direction);
origin = NzVector3<T>(Origin);
return *this;
}
template<typename T>
template<typename U>
NzRay<T>& NzRay<T>::Set(const NzRay<U>& ray)
{
direction = NzVector3<T>(ray.direction);
origin = NzVector3<T>(ray.origin);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzRay& ray)
{
std::memcpy(this, &ray, sizeof(NzRay));
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::SetDirection(const NzVector3<T>& Direction)
{
direction = Direction;
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::SetOrigin(const NzVector3<T>& Origin)
{
origin = Origin;
return *this;
}
template<typename T>
NzString NzRay<T>::ToString() const
{
NzStringStream ss;
return ss << "Ray(" << origin.x << ", " << origin.y << ", " << origin.z << " | direction: " << direction.x << ", " << direction.y << ", " << direction.z << ')';
}
template<typename T>
NzRay<T> NzRay<T>::Lerp(const NzRay& from, const NzRay& to, T interpolation)
{
return NzRay<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
}
template<typename T>
NzRay<T> NzRay<T>::UnitX()
{
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitX());
}
template<typename T>
NzRay<T> NzRay<T>::UnitY()
{
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitY());
}
template<typename T>
NzRay<T> NzRay<T>::UnitZ()
{
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitZ());
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzRay<T>& ray)
{
return out << ray.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>