NazaraEngine/src/Nazara/Graphics/ForwardRenderQueue.cpp

754 lines
23 KiB
C++

// Copyright (C) 2014 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/ForwardRenderQueue.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Debug.hpp>
///TODO: Remplacer les sinus/cosinus par une lookup table (va booster les perfs d'un bon x10)
namespace
{
enum ResourceType
{
ResourceType_IndexBuffer,
ResourceType_Material,
ResourceType_Texture,
ResourceType_VertexBuffer
};
}
void NzForwardRenderQueue::AddBillboard(const NzMaterial* material, const NzVector3f& position, const NzVector2f& size, const NzVector2f& sinCos, const NzColor& color)
{
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
billboardVector.push_back(BillboardData{color, position, size, sinCos});
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const NzColor> colorPtr)
{
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
NzVector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
sinCosPtr.Reset(&defaultSinCos, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
if (!colorPtr)
colorPtr.Reset(&NzColor::White, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
billboardData->center = *positionPtr++;
billboardData->color = *colorPtr++;
billboardData->sinCos = *sinCosPtr++;
billboardData->size = *sizePtr++;
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const float> alphaPtr)
{
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
NzVector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
sinCosPtr.Reset(&defaultSinCos, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
float defaultAlpha = 1.f;
if (!alphaPtr)
alphaPtr.Reset(&defaultAlpha, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
billboardData->center = *positionPtr++;
billboardData->color = NzColor(255, 255, 255, static_cast<nzUInt8>(255.f * (*alphaPtr++)));
billboardData->sinCos = *sinCosPtr++;
billboardData->size = *sizePtr++;
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const NzColor> colorPtr)
{
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
anglePtr.Reset(&defaultRotation, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
if (!colorPtr)
colorPtr.Reset(&NzColor::White, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
float sin = std::sin(NzToRadians(*anglePtr));
float cos = std::cos(NzToRadians(*anglePtr));
anglePtr++;
billboardData->center = *positionPtr++;
billboardData->color = *colorPtr++;
billboardData->sinCos.Set(sin, cos);
billboardData->size = *sizePtr++;
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const float> alphaPtr)
{
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
anglePtr.Reset(&defaultRotation, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
float defaultAlpha = 1.f;
if (!alphaPtr)
alphaPtr.Reset(&defaultAlpha, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
float sin = std::sin(NzToRadians(*anglePtr));
float cos = std::cos(NzToRadians(*anglePtr));
anglePtr++;
billboardData->center = *positionPtr++;
billboardData->color = NzColor(255, 255, 255, static_cast<nzUInt8>(255.f * (*alphaPtr++)));
billboardData->sinCos.Set(sin, cos);
billboardData->size = *sizePtr++;
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const NzColor> colorPtr)
{
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
NzVector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
sinCosPtr.Reset(&defaultSinCos, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
if (!colorPtr)
colorPtr.Reset(&NzColor::White, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
billboardData->center = *positionPtr++;
billboardData->color = *colorPtr++;
billboardData->sinCos = *sinCosPtr++;
billboardData->size.Set(*sizePtr++);
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const float> alphaPtr)
{
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
NzVector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
sinCosPtr.Reset(&defaultSinCos, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
float defaultAlpha = 1.f;
if (!alphaPtr)
alphaPtr.Reset(&defaultAlpha, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
billboardData->center = *positionPtr++;
billboardData->color = NzColor(255, 255, 255, static_cast<nzUInt8>(255.f * (*alphaPtr++)));
billboardData->sinCos = *sinCosPtr++;
billboardData->size.Set(*sizePtr++);
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const NzColor> colorPtr)
{
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
anglePtr.Reset(&defaultRotation, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
if (!colorPtr)
colorPtr.Reset(&NzColor::White, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
float sin = std::sin(NzToRadians(*anglePtr));
float cos = std::cos(NzToRadians(*anglePtr));
anglePtr++;
billboardData->center = *positionPtr++;
billboardData->color = *colorPtr++;
billboardData->sinCos.Set(sin, cos);
billboardData->size.Set(*sizePtr++);
billboardData++;
}
}
void NzForwardRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const float> alphaPtr)
{
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
anglePtr.Reset(&defaultRotation, 0); // L'astuce ici est de mettre le stride sur zéro, rendant le pointeur immobile
float defaultAlpha = 1.f;
if (!alphaPtr)
alphaPtr.Reset(&defaultAlpha, 0); // Pareil
auto it = billboards.find(material);
if (it == billboards.end())
{
BatchedBillboardEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = billboards.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
BillboardData* billboardData = &billboardVector[prevSize];
for (unsigned int i = 0; i < count; ++i)
{
float sin = std::sin(NzToRadians(*anglePtr));
float cos = std::cos(NzToRadians(*anglePtr));
anglePtr++;
billboardData->center = *positionPtr++;
billboardData->color = NzColor(255, 255, 255, static_cast<nzUInt8>(255.f * (*alphaPtr++)));
billboardData->sinCos.Set(sin, cos);
billboardData->size.Set(*sizePtr++);
billboardData++;
}
}
void NzForwardRenderQueue::AddDrawable(const NzDrawable* drawable)
{
#if NAZARA_GRAPHICS_SAFE
if (!drawable)
{
NazaraError("Invalid drawable");
return;
}
#endif
otherDrawables.push_back(drawable);
}
void NzForwardRenderQueue::AddLight(const NzLight* light)
{
#if NAZARA_GRAPHICS_SAFE
if (!light)
{
NazaraError("Invalid light");
return;
}
#endif
switch (light->GetLightType())
{
case nzLightType_Directional:
directionalLights.push_back(light);
break;
case nzLightType_Point:
case nzLightType_Spot:
lights.push_back(light);
break;
#ifdef NAZARA_DEBUG
default:
NazaraError("Light type not handled (0x" + NzString::Number(light->GetLightType(), 16) + ')');
#endif
}
}
void NzForwardRenderQueue::AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix)
{
if (material->IsEnabled(nzRendererParameter_Blend))
{
// Le matériau est transparent, nous devons rendre ce mesh d'une autre façon (après le rendu des objets opaques et en les triant)
unsigned int index = transparentModelData.size();
transparentModelData.resize(index+1);
TransparentModelData& data = transparentModelData.back();
data.material = material;
data.meshData = meshData;
data.squaredBoundingSphere = NzSpheref(transformMatrix.GetTranslation() + meshAABB.GetCenter(), meshAABB.GetSquaredRadius());
data.transformMatrix = transformMatrix;
transparentModels.push_back(index);
}
else
{
auto it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
BatchedModelEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = opaqueModels.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedModelEntry& entry = it->second;
entry.enabled = true;
auto& meshMap = entry.meshMap;
auto it2 = meshMap.find(meshData);
if (it2 == meshMap.end())
{
MeshInstanceEntry instanceEntry(this, ResourceType_IndexBuffer, ResourceType_VertexBuffer);
instanceEntry.indexBufferListener = meshData.indexBuffer;
instanceEntry.squaredBoundingSphere = meshAABB.GetSquaredBoundingSphere();
instanceEntry.vertexBufferListener = meshData.vertexBuffer;
it2 = meshMap.insert(std::make_pair(meshData, std::move(instanceEntry))).first;
}
std::vector<NzMatrix4f>& instances = it2->second.instances;
instances.push_back(transformMatrix);
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instances.size() >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
entry.instancingEnabled = true; // Apparemment oui, activons l'instancing avec ce matériau
}
}
void NzForwardRenderQueue::AddSprites(const NzMaterial* material, const NzVertexStruct_XYZ_Color_UV* vertices, unsigned int spriteCount, const NzTexture* overlay)
{
auto matIt = basicSprites.find(material);
if (matIt == basicSprites.end())
{
BatchedBasicSpriteEntry entry(this, ResourceType_Material);
entry.materialListener = material;
matIt = basicSprites.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedBasicSpriteEntry& entry = matIt->second;
entry.enabled = true;
auto& overlayMap = entry.overlayMap;
auto overlayIt = overlayMap.find(overlay);
if (overlayIt == overlayMap.end())
{
BatchedSpriteEntry overlayEntry(this, ResourceType_Texture);
overlayEntry.textureListener = overlay;
overlayIt = overlayMap.insert(std::make_pair(overlay, std::move(overlayEntry))).first;
}
auto& spriteVector = overlayIt->second.spriteChains;
spriteVector.push_back(SpriteChain_XYZ_Color_UV({vertices, spriteCount}));
}
void NzForwardRenderQueue::Clear(bool fully)
{
directionalLights.clear();
lights.clear();
otherDrawables.clear();
transparentModels.clear();
transparentModelData.clear();
if (fully)
{
basicSprites.clear();
billboards.clear();
opaqueModels.clear();
}
}
void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer)
{
NzPlanef nearPlane = viewer->GetFrustum().GetPlane(nzFrustumPlane_Near);
NzVector3f viewerPos = viewer->GetEyePosition();
NzVector3f viewerNormal = viewer->GetForward();
std::sort(transparentModels.begin(), transparentModels.end(), [this, &nearPlane, &viewerNormal](unsigned int index1, unsigned int index2)
{
const NzSpheref& sphere1 = transparentModelData[index1].squaredBoundingSphere;
const NzSpheref& sphere2 = transparentModelData[index2].squaredBoundingSphere;
NzVector3f position1 = sphere1.GetNegativeVertex(viewerNormal);
NzVector3f position2 = sphere2.GetNegativeVertex(viewerNormal);
return nearPlane.Distance(position1) > nearPlane.Distance(position2);
});
for (auto& pair : billboards)
{
const NzMaterial* mat = pair.first;
if (mat->IsDepthSortingEnabled())
{
BatchedBillboardEntry& entry = pair.second;
auto& billboardVector = entry.billboards;
std::sort(billboardVector.begin(), billboardVector.end(), [&viewerPos](const BillboardData& data1, const BillboardData& data2)
{
return viewerPos.SquaredDistance(data1.center) > viewerPos.SquaredDistance(data2.center);
});
}
}
}
bool NzForwardRenderQueue::OnResourceDestroy(const NzResource* resource, int index)
{
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
const NzMaterial* material = static_cast<const NzMaterial*>(resource);
basicSprites.erase(material);
billboards.erase(material);
opaqueModels.erase(material);
break;
}
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
return false; // Nous ne voulons plus recevoir d'évènement de cette ressource
}
void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int index)
{
// La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche
// des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources)
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
for (auto it = basicSprites.begin(); it != basicSprites.end(); ++it)
{
if (it->first == resource)
{
basicSprites.erase(it);
break;
}
}
for (auto it = billboards.begin(); it != billboards.end(); ++it)
{
if (it->first == resource)
{
billboards.erase(it);
break;
}
}
for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it)
{
if (it->first == resource)
{
opaqueModels.erase(it);
break;
}
}
break;
}
case ResourceType_Texture:
{
for (auto matIt = basicSprites.begin(); matIt != basicSprites.end(); ++matIt)
{
auto& overlayMap = matIt->second.overlayMap;
for (auto overlayIt = overlayMap.begin(); overlayIt != overlayMap.end(); ++overlayIt)
{
if (overlayIt->first == resource)
{
overlayMap.erase(overlayIt);
break;
}
}
}
break;
}
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
}
bool NzForwardRenderQueue::BatchedBillboardComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Billboard | nzShaderFlags_VertexColor)->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Billboard | nzShaderFlags_VertexColor)->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance()->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance()->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance()->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance()->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::MeshDataComparator::operator()(const NzMeshData& data1, const NzMeshData& data2)
{
const NzBuffer* buffer1;
const NzBuffer* buffer2;
buffer1 = (data1.indexBuffer) ? data1.indexBuffer->GetBuffer() : nullptr;
buffer2 = (data2.indexBuffer) ? data2.indexBuffer->GetBuffer() : nullptr;
if (buffer1 != buffer2)
return buffer1 < buffer2;
buffer1 = data1.vertexBuffer->GetBuffer();
buffer2 = data2.vertexBuffer->GetBuffer();
if (buffer1 != buffer2)
return buffer1 < buffer2;
return data1.primitiveMode < data2.primitiveMode;
}