NazaraEngine/src/Nazara/Renderer/Renderer.cpp

1486 lines
34 KiB
C++

// Copyright (C) 2013 Jérôme Leclercq
// This file is part of the "Nazara Engine - Renderer module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Renderer/OpenGL.hpp> // Pour éviter une redéfinition de WIN32_LEAN_AND_MEAN
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Core/Color.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/Log.hpp>
#include <Nazara/Renderer/AbstractShader.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/Context.hpp>
#include <Nazara/Renderer/DebugDrawer.hpp>
#include <Nazara/Renderer/HardwareBuffer.hpp>
#include <Nazara/Renderer/Material.hpp>
#include <Nazara/Renderer/RenderTarget.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/ShaderBuilder.hpp>
#include <Nazara/Renderer/Loaders/Texture.hpp>
#include <Nazara/Utility/AbstractBuffer.hpp>
#include <Nazara/Utility/IndexBuffer.hpp>
#include <Nazara/Utility/Utility.hpp>
#include <Nazara/Utility/VertexBuffer.hpp>
#include <Nazara/Utility/VertexDeclaration.hpp>
#include <map>
#include <memory>
#include <set>
#include <stdexcept>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <Nazara/Renderer/Debug.hpp>
namespace
{
enum UpdateFlags
{
Update_None = 0,
Update_Matrices = 0x01,
Update_Shader = 0x02,
Update_Textures = 0x04,
Update_VAO = 0x08,
};
struct MatrixUnit
{
NzMatrix4f matrix;
bool sent;
bool updated;
int location;
};
struct TextureUnit
{
NzTextureSampler sampler;
const NzTexture* texture = nullptr;
bool samplerUpdated = false;
bool textureUpdated = true;
};
NzAbstractBuffer* HardwareBufferFunction(NzBuffer* parent, nzBufferType type)
{
return new NzHardwareBuffer(parent, type);
}
using VAO_Key = std::tuple<const NzIndexBuffer*, const NzVertexBuffer*, const NzVertexDeclaration*, const NzVertexDeclaration*>;
std::unordered_map<NzContext*, std::map<VAO_Key, unsigned int>> s_vaos;
std::set<unsigned int> s_dirtyTextureUnits;
std::vector<TextureUnit> s_textureUnits;
GLuint s_currentVAO = 0;
NzVertexBuffer* s_instancingBuffer = nullptr;
NzVertexBuffer* s_fullscreenQuadBuffer = nullptr;
MatrixUnit s_matrices[nzMatrixType_Max+1];
NzRenderStates s_states;
NzVector2ui s_targetSize;
nzUInt8 s_maxAnisotropyLevel;
nzUInt32 s_updateFlags;
const NzIndexBuffer* s_indexBuffer;
const NzRenderTarget* s_target;
const NzShader* s_shader;
const NzVertexBuffer* s_vertexBuffer;
const NzVertexDeclaration* s_instancingDeclaration;
bool s_capabilities[nzRendererCap_Max+1];
bool s_instancing;
bool s_useSamplerObjects;
bool s_useVertexArrayObjects;
unsigned int s_maxRenderTarget;
unsigned int s_maxTextureUnit;
unsigned int s_maxVertexAttribs;
}
void NzRenderer::Clear(unsigned long flags)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
if (flags)
{
GLenum mask = 0;
if (flags & nzRendererClear_Color)
mask |= GL_COLOR_BUFFER_BIT;
if (flags & nzRendererClear_Depth)
mask |= GL_DEPTH_BUFFER_BIT;
if (flags & nzRendererClear_Stencil)
mask |= GL_STENCIL_BUFFER_BIT;
// Les états du rendu sont suceptibles d'influencer glClear
NzOpenGL::ApplyStates(s_states);
glClear(mask);
}
}
void NzRenderer::DrawFullscreenQuad()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
EnableInstancing(false);
SetIndexBuffer(nullptr);
SetVertexBuffer(s_fullscreenQuadBuffer);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
void NzRenderer::DrawIndexedPrimitives(nzPrimitiveMode mode, unsigned int firstIndex, unsigned int indexCount)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > nzPrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_indexBuffer)
{
NazaraError("No index buffer");
return;
}
#endif
EnableInstancing(false);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
GLenum type;
nzUInt8* offset = reinterpret_cast<nzUInt8*>(s_indexBuffer->GetStartOffset());
if (s_indexBuffer->HasLargeIndices())
{
offset += firstIndex*sizeof(nzUInt64);
type = GL_UNSIGNED_INT;
}
else
{
offset += firstIndex*sizeof(nzUInt32);
type = GL_UNSIGNED_SHORT;
}
glDrawElements(NzOpenGL::PrimitiveMode[mode], indexCount, type, offset);
glBindVertexArray(0);
}
void NzRenderer::DrawIndexedPrimitivesInstanced(unsigned int instanceCount, nzPrimitiveMode mode, unsigned int firstIndex, unsigned int indexCount)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > nzPrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_capabilities[nzRendererCap_Instancing])
{
NazaraError("Instancing not supported");
return;
}
if (!s_indexBuffer)
{
NazaraError("No index buffer");
return;
}
if (instanceCount == 0)
{
NazaraError("Instance count must be over 0");
return;
}
if (instanceCount > NAZARA_RENDERER_MAX_INSTANCES)
{
NazaraError("Instance count is over maximum instance count (" + NzString::Number(instanceCount) + " >= " NazaraStringifyMacro(NAZARA_RENDERER_MAX_INSTANCES) ")" );
return;
}
#endif
EnableInstancing(true);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
GLenum type;
nzUInt8* offset = reinterpret_cast<nzUInt8*>(s_indexBuffer->GetStartOffset());
if (s_indexBuffer->HasLargeIndices())
{
offset += firstIndex*sizeof(nzUInt64);
type = GL_UNSIGNED_INT;
}
else
{
offset += firstIndex*sizeof(nzUInt32);
type = GL_UNSIGNED_SHORT;
}
glDrawElementsInstanced(NzOpenGL::PrimitiveMode[mode], indexCount, type, offset, instanceCount);
glBindVertexArray(0);
}
void NzRenderer::DrawPrimitives(nzPrimitiveMode mode, unsigned int firstVertex, unsigned int vertexCount)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > nzPrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
EnableInstancing(false);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
glDrawArrays(NzOpenGL::PrimitiveMode[mode], firstVertex, vertexCount);
glBindVertexArray(0);
}
void NzRenderer::DrawPrimitivesInstanced(unsigned int instanceCount, nzPrimitiveMode mode, unsigned int firstVertex, unsigned int vertexCount)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > nzPrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_capabilities[nzRendererCap_Instancing])
{
NazaraError("Instancing not supported");
return;
}
if (instanceCount == 0)
{
NazaraError("Instance count must be over 0");
return;
}
if (instanceCount > NAZARA_RENDERER_MAX_INSTANCES)
{
NazaraError("Instance count is over maximum instance count (" + NzString::Number(instanceCount) + " >= " NazaraStringifyMacro(NAZARA_RENDERER_MAX_INSTANCES) ")" );
return;
}
#endif
EnableInstancing(true);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
glDrawArraysInstanced(NzOpenGL::PrimitiveMode[mode], firstVertex, vertexCount, instanceCount);
glBindVertexArray(0);
}
void NzRenderer::Enable(nzRendererParameter parameter, bool enable)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (parameter > nzRendererParameter_Max)
{
NazaraError("Renderer parameter out of enum");
return;
}
#endif
s_states.parameters[parameter] = enable;
}
void NzRenderer::Flush()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glFlush();
}
float NzRenderer::GetLineWidth()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return 0.f;
}
#endif
return s_states.lineWidth;
}
NzMatrix4f NzRenderer::GetMatrix(nzMatrixType type)
{
#ifdef NAZARA_DEBUG
if (type > nzMatrixType_Max)
{
NazaraError("Matrix type out of enum");
return NzMatrix4f();
}
#endif
if (!s_matrices[type].updated)
UpdateMatrix(type);
return s_matrices[type].matrix;
}
nzUInt8 NzRenderer::GetMaxAnisotropyLevel()
{
return s_maxAnisotropyLevel;
}
unsigned int NzRenderer::GetMaxRenderTargets()
{
return s_maxRenderTarget;
}
unsigned int NzRenderer::GetMaxTextureUnits()
{
return s_maxTextureUnit;
}
unsigned int NzRenderer::GetMaxVertexAttribs()
{
return s_maxVertexAttribs;
}
float NzRenderer::GetPointSize()
{
return s_states.pointSize;
}
const NzRenderStates& NzRenderer::GetRenderStates()
{
return s_states;
}
NzRectui NzRenderer::GetScissorRect()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return NzRectui();
}
#endif
GLint params[4];
glGetIntegerv(GL_SCISSOR_BOX, &params[0]);
return NzRectui(params[0], params[1], params[2], params[3]);
}
const NzShader* NzRenderer::GetShader()
{
return s_shader;
}
const NzRenderTarget* NzRenderer::GetTarget()
{
return s_target;
}
NzRectui NzRenderer::GetViewport()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return NzRectui();
}
#endif
GLint params[4];
glGetIntegerv(GL_VIEWPORT, &params[0]);
return NzRectui(params[0], params[1], params[2], params[3]);
}
bool NzRenderer::HasCapability(nzRendererCap capability)
{
#ifdef NAZARA_DEBUG
if (capability > nzRendererCap_Max)
{
NazaraError("Renderer capability out of enum");
return false;
}
#endif
return s_capabilities[capability];
}
bool NzRenderer::Initialize()
{
if (s_moduleReferenceCounter++ != 0)
return true; // Déjà initialisé
// Initialisation des dépendances
if (!NzUtility::Initialize())
{
NazaraError("Failed to initialize utility module");
return false;
}
// Initialisation du module
if (!NzOpenGL::Initialize())
{
NazaraError("Failed to initialize OpenGL");
return false;
}
NzContext::EnsureContext();
NzBuffer::SetBufferFunction(nzBufferStorage_Hardware, HardwareBufferFunction);
for (unsigned int i = 0; i <= nzMatrixType_Max; ++i)
{
MatrixUnit& unit = s_matrices[i];
unit.location = -1;
unit.matrix.MakeIdentity();
unit.sent = false;
unit.updated = true;
}
// Récupération des capacités d'OpenGL
s_capabilities[nzRendererCap_AnisotropicFilter] = NzOpenGL::IsSupported(nzOpenGLExtension_AnisotropicFilter);
s_capabilities[nzRendererCap_FP64] = NzOpenGL::IsSupported(nzOpenGLExtension_FP64);
s_capabilities[nzRendererCap_HardwareBuffer] = true; // Natif depuis OpenGL 1.5
s_capabilities[nzRendererCap_Instancing] = NzOpenGL::IsSupported(nzOpenGLExtension_DrawInstanced) && NzOpenGL::IsSupported(nzOpenGLExtension_InstancedArray);
s_capabilities[nzRendererCap_MultipleRenderTargets] = (glBindFragDataLocation != nullptr); // Natif depuis OpenGL 2.0 mais inutile sans glBindFragDataLocation
s_capabilities[nzRendererCap_OcclusionQuery] = true; // Natif depuis OpenGL 1.5
s_capabilities[nzRendererCap_PixelBufferObject] = NzOpenGL::IsSupported(nzOpenGLExtension_PixelBufferObject);
s_capabilities[nzRendererCap_RenderTexture] = NzOpenGL::IsSupported(nzOpenGLExtension_FrameBufferObject);
s_capabilities[nzRendererCap_Texture3D] = true; // Natif depuis OpenGL 1.2
s_capabilities[nzRendererCap_TextureCubemap] = true; // Natif depuis OpenGL 1.3
s_capabilities[nzRendererCap_TextureMulti] = true; // Natif depuis OpenGL 1.3
s_capabilities[nzRendererCap_TextureNPOT] = true; // Natif depuis OpenGL 2.0
if (s_capabilities[nzRendererCap_AnisotropicFilter])
{
GLfloat maxAnisotropy;
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropy);
s_maxAnisotropyLevel = static_cast<nzUInt8>(maxAnisotropy);
}
else
s_maxAnisotropyLevel = 1;
if (s_capabilities[nzRendererCap_MultipleRenderTargets])
{
GLint maxDrawBuffers;
glGetIntegerv(GL_MAX_DRAW_BUFFERS, &maxDrawBuffers);
s_maxRenderTarget = static_cast<unsigned int>(maxDrawBuffers);
}
else
s_maxRenderTarget = 1;
if (s_capabilities[nzRendererCap_TextureMulti])
{
GLint maxTextureUnits;
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
// Impossible de binder plus de texcoords que d'attributes (en sachant qu'un certain nombre est déjà pris par les autres attributs)
s_maxTextureUnit = static_cast<unsigned int>(maxTextureUnits);
}
else
s_maxTextureUnit = 1;
GLint maxVertexAttribs;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);
s_maxVertexAttribs = static_cast<unsigned int>(maxVertexAttribs);
s_states = NzRenderStates();
s_indexBuffer = nullptr;
s_shader = nullptr;
s_target = nullptr;
s_textureUnits.resize(s_maxTextureUnit);
s_useSamplerObjects = NzOpenGL::IsSupported(nzOpenGLExtension_SamplerObjects);
s_useVertexArrayObjects = NzOpenGL::IsSupported(nzOpenGLExtension_VertexArrayObjects);
s_vertexBuffer = nullptr;
s_updateFlags = (Update_Matrices | Update_Shader | Update_VAO);
s_fullscreenQuadBuffer = new NzVertexBuffer(NzVertexDeclaration::Get(nzVertexLayout_XY), 4, nzBufferStorage_Hardware, nzBufferUsage_Static);
float vertices[4*2] =
{
-1.f, -1.f,
1.f, -1.f,
-1.f, 1.f,
1.f, 1.f,
};
if (!s_fullscreenQuadBuffer->FillVertices(vertices, 0, 4))
{
NazaraError("Failed to fill fullscreen quad buffer");
Uninitialize();
return false;
}
if (s_capabilities[nzRendererCap_Instancing])
{
try
{
s_instancingBuffer = new NzVertexBuffer(NzVertexDeclaration::Get(nzVertexLayout_Matrix4), NAZARA_RENDERER_MAX_INSTANCES, nzBufferStorage_Hardware, nzBufferUsage_Dynamic);
}
catch (const std::exception& e)
{
s_capabilities[nzRendererCap_Instancing] = false;
s_instancingBuffer = nullptr;
NazaraError("Failed to create instancing buffer: " + NzString(e.what())); ///TODO: Noexcept
}
}
else
s_instancingBuffer = nullptr;
if (!NzMaterial::Initialize())
{
NazaraError("Failed to initialize materials");
Uninitialize();
return false;
}
if (!NzShaderBuilder::Initialize())
{
NazaraError("Failed to initialize shader builder");
Uninitialize();
return false;
}
if (!NzTextureSampler::Initialize())
{
NazaraError("Failed to initialize texture sampler");
Uninitialize();
return false;
}
// Loaders
NzLoaders_Texture_Register();
NazaraNotice("Initialized: Renderer module");
return true;
}
bool NzRenderer::IsEnabled(nzRendererParameter parameter)
{
#ifdef NAZARA_DEBUG
if (parameter > nzRendererParameter_Max)
{
NazaraError("Renderer parameter out of enum");
return false;
}
#endif
return s_states.parameters[parameter];
}
bool NzRenderer::IsInitialized()
{
return s_moduleReferenceCounter != 0;
}
void NzRenderer::SetBlendFunc(nzBlendFunc srcBlend, nzBlendFunc dstBlend)
{
s_states.srcBlend = srcBlend;
s_states.dstBlend = dstBlend;
}
void NzRenderer::SetClearColor(const NzColor& color)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearColor(color.r/255.f, color.g/255.f, color.b/255.f, color.a/255.f);
}
void NzRenderer::SetClearColor(nzUInt8 r, nzUInt8 g, nzUInt8 b, nzUInt8 a)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearColor(r/255.f, g/255.f, b/255.f, a/255.f);
}
void NzRenderer::SetClearDepth(double depth)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearDepth(depth);
}
void NzRenderer::SetClearStencil(unsigned int value)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearStencil(value);
}
void NzRenderer::SetDepthFunc(nzRendererComparison compareFunc)
{
s_states.depthFunc = compareFunc;
}
void NzRenderer::SetFaceCulling(nzFaceCulling cullingMode)
{
s_states.faceCulling = cullingMode;
}
void NzRenderer::SetFaceFilling(nzFaceFilling fillingMode)
{
s_states.faceFilling = fillingMode;
}
void NzRenderer::SetIndexBuffer(const NzIndexBuffer* indexBuffer)
{
#if NAZARA_RENDERER_SAFE
if (indexBuffer && !indexBuffer->IsHardware())
{
NazaraError("Buffer must be hardware");
return;
}
#endif
if (s_indexBuffer != indexBuffer)
{
s_indexBuffer = indexBuffer;
s_updateFlags |= Update_VAO;
}
}
void NzRenderer::SetInstancingData(const void* instancingData, unsigned int instanceCount)
{
#if NAZARA_RENDERER_SAFE
if (!s_capabilities[nzRendererCap_Instancing])
{
NazaraError("Instancing not supported");
return;
}
if (!instancingData)
{
NazaraError("Instancing data must be valid");
return;
}
if (instanceCount == 0)
{
NazaraError("Instance count must be over 0");
return;
}
unsigned int maxInstanceCount = s_instancingBuffer->GetVertexCount();
if (instanceCount > maxInstanceCount)
{
NazaraError("Instance count is over maximum instance count (" + NzString::Number(instanceCount) + " >= " + NzString::Number(maxInstanceCount) + ")");
return;
}
#endif
if (!s_instancingBuffer->FillVertices(instancingData, 0, instanceCount, true))
NazaraError("Failed to fill instancing buffer");
}
void NzRenderer::SetInstancingDeclaration(const NzVertexDeclaration* declaration, unsigned int* newMaxInstanceCount)
{
#if NAZARA_RENDERER_SAFE
if (!s_capabilities[nzRendererCap_Instancing])
{
NazaraError("Instancing not supported");
return;
}
if (!declaration)
{
NazaraError("Declaration must be valid");
return;
}
#endif
s_instancingBuffer->SetVertexDeclaration(declaration);
if (newMaxInstanceCount)
*newMaxInstanceCount = s_instancingBuffer->GetVertexCount();
}
void NzRenderer::SetLineWidth(float width)
{
#if NAZARA_RENDERER_SAFE
if (width <= 0.f)
{
NazaraError("Width must be over zero");
return;
}
#endif
s_states.lineWidth = width;
}
void NzRenderer::SetMatrix(nzMatrixType type, const NzMatrix4f& matrix)
{
#ifdef NAZARA_DEBUG
if (type > nzMatrixType_Max)
{
NazaraError("Matrix type out of enum");
return;
}
#endif
s_matrices[type].matrix = matrix;
s_matrices[type].updated = true;
// Invalidation des combinaisons
switch (type)
{
case nzMatrixType_Projection:
s_matrices[nzMatrixType_ViewProj].updated = false;
s_matrices[nzMatrixType_WorldViewProj].updated = false;
break;
case nzMatrixType_View:
s_matrices[nzMatrixType_ViewProj].updated = false;
s_matrices[nzMatrixType_World].updated = false;
s_matrices[nzMatrixType_WorldViewProj].updated = false;
break;
case nzMatrixType_World:
s_matrices[nzMatrixType_WorldView].updated = false;
s_matrices[nzMatrixType_WorldViewProj].updated = false;
break;
case nzMatrixType_ViewProj:
break;
case nzMatrixType_WorldView:
s_matrices[nzMatrixType_WorldViewProj].updated = false;
break;
case nzMatrixType_WorldViewProj:
break;
}
s_updateFlags |= Update_Matrices;
}
void NzRenderer::SetPointSize(float size)
{
#if NAZARA_RENDERER_SAFE
if (size <= 0.f)
{
NazaraError("Size must be over zero");
return;
}
#endif
s_states.pointSize = size;
}
void NzRenderer::SetRenderStates(const NzRenderStates& states)
{
s_states = states;
}
void NzRenderer::SetScissorRect(const NzRectui& rect)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
unsigned int height = s_target->GetHeight();
#if NAZARA_RENDERER_SAFE
if (!s_target)
{
NazaraError("Renderer has no target");
return;
}
unsigned int width = s_target->GetWidth();
if (rect.x+rect.width > width || rect.y+rect.height > height)
{
NazaraError("Rectangle dimensions are out of bounds");
return;
}
#endif
glScissor(rect.x, height-rect.height-rect.y, rect.width, rect.height);
}
void NzRenderer::SetShader(const NzShader* shader)
{
#if NAZARA_RENDERER_SAFE
if (shader && !shader->IsCompiled())
{
NazaraError("Shader is not compiled");
return;
}
#endif
if (s_shader != shader)
{
s_shader = shader;
s_updateFlags |= Update_Shader;
}
}
void NzRenderer::SetStencilCompareFunction(nzRendererComparison compareFunc)
{
#ifdef NAZARA_DEBUG
if (compareFunc > nzRendererComparison_Max)
{
NazaraError("Renderer comparison out of enum");
return;
}
#endif
s_states.stencilCompare = compareFunc;
}
void NzRenderer::SetStencilFailOperation(nzStencilOperation failOperation)
{
#ifdef NAZARA_DEBUG
if (failOperation > nzStencilOperation_Max)
{
NazaraError("Stencil fail operation out of enum");
return;
}
#endif
s_states.stencilFail = failOperation;
}
void NzRenderer::SetStencilMask(nzUInt32 mask)
{
s_states.stencilMask = mask;
}
void NzRenderer::SetStencilPassOperation(nzStencilOperation passOperation)
{
#ifdef NAZARA_DEBUG
if (passOperation > nzStencilOperation_Max)
{
NazaraError("Stencil pass operation out of enum");
return;
}
#endif
s_states.stencilPass = passOperation;
}
void NzRenderer::SetStencilReferenceValue(unsigned int refValue)
{
s_states.stencilReference = refValue;
}
void NzRenderer::SetStencilZFailOperation(nzStencilOperation zfailOperation)
{
#ifdef NAZARA_DEBUG
if (zfailOperation > nzStencilOperation_Max)
{
NazaraError("Stencil zfail operation out of enum");
return;
}
#endif
s_states.stencilZFail = zfailOperation;
}
bool NzRenderer::SetTarget(const NzRenderTarget* target)
{
if (s_target == target)
return true;
if (s_target)
{
if (!s_target->HasContext())
s_target->Desactivate();
s_target = nullptr;
}
if (target)
{
#if NAZARA_RENDERER_SAFE
if (!target->IsRenderable())
{
NazaraError("Target not renderable");
return false;
}
#endif
if (!target->Activate())
{
NazaraError("Failed to activate target");
return false;
}
s_target = target;
s_targetSize.Set(target->GetWidth(), target->GetHeight());
}
return true;
}
void NzRenderer::SetTexture(nzUInt8 unit, const NzTexture* texture)
{
#if NAZARA_RENDERER_SAFE
if (unit >= s_textureUnits.size())
{
NazaraError("Texture unit out of range (" + NzString::Number(unit) + " >= " + NzString::Number(s_textureUnits.size()) + ')');
return;
}
#endif
if (s_textureUnits[unit].texture != texture)
{
s_textureUnits[unit].texture = texture;
s_textureUnits[unit].textureUpdated = false;
if (texture)
{
if (s_textureUnits[unit].sampler.UseMipmaps(texture->HasMipmaps()))
s_textureUnits[unit].samplerUpdated = false;
}
s_dirtyTextureUnits.insert(unit);
s_updateFlags |= Update_Textures;
}
}
void NzRenderer::SetTextureSampler(nzUInt8 unit, const NzTextureSampler& sampler)
{
#if NAZARA_RENDERER_SAFE
if (unit >= s_textureUnits.size())
{
NazaraError("Texture unit out of range (" + NzString::Number(unit) + " >= " + NzString::Number(s_textureUnits.size()) + ')');
return;
}
#endif
s_textureUnits[unit].sampler = sampler;
s_textureUnits[unit].samplerUpdated = false;
if (s_textureUnits[unit].texture)
s_textureUnits[unit].sampler.UseMipmaps(s_textureUnits[unit].texture->HasMipmaps());
s_dirtyTextureUnits.insert(unit);
s_updateFlags |= Update_Textures;
}
void NzRenderer::SetVertexBuffer(const NzVertexBuffer* vertexBuffer)
{
#if NAZARA_RENDERER_SAFE
if (vertexBuffer && !vertexBuffer->IsHardware())
{
NazaraError("Buffer must be hardware");
return;
}
#endif
if (vertexBuffer && s_vertexBuffer != vertexBuffer)
{
s_vertexBuffer = vertexBuffer;
s_updateFlags |= Update_VAO;
}
}
void NzRenderer::SetViewport(const NzRectui& viewport)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
unsigned int height = s_target->GetHeight();
#if NAZARA_RENDERER_SAFE
if (!s_target)
{
NazaraError("Renderer has no target");
return;
}
unsigned int width = s_target->GetWidth();
if (viewport.x+viewport.width > width || viewport.y+viewport.height > height)
{
NazaraError("Rectangle dimensions are out of bounds");
return;
}
#endif
glViewport(viewport.x, height-viewport.height-viewport.y, viewport.width, viewport.height);
}
void NzRenderer::Uninitialize()
{
if (s_moduleReferenceCounter != 1)
{
// Le module est soit encore utilisé, soit pas initialisé
if (s_moduleReferenceCounter > 1)
s_moduleReferenceCounter--;
return;
}
NzContext::EnsureContext();
// Libération du module
s_moduleReferenceCounter = 0;
s_textureUnits.clear();
// Loaders
NzLoaders_Texture_Unregister();
NzTextureSampler::Uninitialize();
NzShaderBuilder::Uninitialize();
NzMaterial::Uninitialize();
NzDebugDrawer::Uninitialize();
// Libération des buffers
delete s_fullscreenQuadBuffer;
delete s_instancingBuffer;
s_fullscreenQuadBuffer = nullptr;
s_instancingBuffer = nullptr;
// Libération des VAOs
for (auto pair : s_vaos)
{
for (auto pair2 : pair.second)
{
GLuint vao = static_cast<GLuint>(pair2.second);
glDeleteVertexArrays(1, &vao);
}
}
NzOpenGL::Uninitialize();
NazaraNotice("Uninitialized: Renderer module");
// Libération des dépendances
NzUtility::Uninitialize();
}
void NzRenderer::EnableInstancing(bool instancing)
{
if (s_instancing != instancing)
{
s_updateFlags |= Update_VAO;
s_instancing = instancing;
}
}
bool NzRenderer::EnsureStateUpdate()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return false;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_shader)
{
NazaraError("No shader");
return false;
}
#endif
NzAbstractShader* shaderImpl = s_shader->m_impl;
shaderImpl->Bind();
// Si le shader a été changé depuis la dernière fois
if (s_updateFlags & Update_Shader)
{
// Récupération des indices des variables uniformes (-1 si la variable n'existe pas)
s_matrices[nzMatrixType_Projection].location = shaderImpl->GetUniformLocation(nzShaderUniform_ProjMatrix);
s_matrices[nzMatrixType_View].location = shaderImpl->GetUniformLocation(nzShaderUniform_ViewMatrix);
s_matrices[nzMatrixType_World].location = shaderImpl->GetUniformLocation(nzShaderUniform_WorldMatrix);
s_matrices[nzMatrixType_ViewProj].location = shaderImpl->GetUniformLocation(nzShaderUniform_ViewProjMatrix);
s_matrices[nzMatrixType_WorldView].location = shaderImpl->GetUniformLocation(nzShaderUniform_WorldViewMatrix);
s_matrices[nzMatrixType_WorldViewProj].location = shaderImpl->GetUniformLocation(nzShaderUniform_WorldViewProjMatrix);
s_updateFlags |= Update_Matrices;
for (unsigned int i = 0; i <= nzMatrixType_Max; ++i)
s_matrices[i].sent = false; // Changement de shader, on renvoie toutes les matrices demandées
s_updateFlags &= ~Update_Shader;
}
shaderImpl->BindTextures();
if (s_updateFlags != Update_None)
{
if (s_updateFlags & Update_Textures)
{
if (s_useSamplerObjects)
{
for (unsigned int i : s_dirtyTextureUnits)
{
TextureUnit& unit = s_textureUnits[i];
if (!unit.textureUpdated)
{
NzOpenGL::SetTextureUnit(i);
unit.texture->Bind();
unit.textureUpdated = true;
}
if (!unit.samplerUpdated)
{
unit.sampler.Bind(i);
unit.samplerUpdated = true;
}
}
}
else
{
for (unsigned int i : s_dirtyTextureUnits)
{
TextureUnit& unit = s_textureUnits[i];
NzOpenGL::SetTextureUnit(i);
unit.texture->Bind();
unit.textureUpdated = true;
unit.sampler.Apply(unit.texture);
unit.samplerUpdated = true;
}
}
s_dirtyTextureUnits.clear(); // Ne change pas la capacité
s_updateFlags &= ~Update_Textures;
}
if (s_updateFlags & Update_Matrices)
{
for (unsigned int i = 0; i <= nzMatrixType_Max; ++i)
{
MatrixUnit& unit = s_matrices[i];
if (unit.location != -1) // On ne traite que les matrices existant dans le shader
{
if (!unit.updated)
UpdateMatrix(static_cast<nzMatrixType>(i));
shaderImpl->SendMatrix(unit.location, unit.matrix);
unit.sent = true;
}
}
s_updateFlags &= ~Update_Matrices;
}
if (s_updateFlags & Update_VAO)
{
#if NAZARA_RENDERER_SAFE
if (!s_vertexBuffer)
{
NazaraError("No vertex buffer");
return false;
}
#endif
bool update;
// Si les VAOs sont supportés, on entoure nos appels par ceux-ci
if (s_useVertexArrayObjects)
{
// Note: Les VAOs ne sont pas partagés entre les contextes, nous avons donc un tableau de VAOs par contexte
auto vaos = s_vaos[NzContext::GetCurrent()];
// Notre clé est composée de ce qui définit un VAO
VAO_Key key(s_indexBuffer, s_vertexBuffer, s_vertexBuffer->GetVertexDeclaration(), (s_instancing) ? s_instancingDeclaration : nullptr);
// On recherche un VAO existant avec notre configuration
auto it = vaos.find(key);
if (it == vaos.end())
{
// On créé notre VAO
glGenVertexArrays(1, &s_currentVAO);
glBindVertexArray(s_currentVAO);
// On l'ajoute à notre liste
vaos.insert(std::make_pair(key, static_cast<unsigned int>(s_currentVAO)));
// Et on indique qu'on veut le programmer
update = true;
}
else
{
// Notre VAO existe déjà, il est donc inutile de le reprogrammer
s_currentVAO = it->second;
update = false;
}
}
else
update = true; // Fallback si les VAOs ne sont pas supportés
if (update)
{
const NzVertexDeclaration* vertexDeclaration;
unsigned int bufferOffset;
unsigned int stride;
NzHardwareBuffer* vertexBufferImpl = static_cast<NzHardwareBuffer*>(s_vertexBuffer->GetBuffer()->GetImpl());
vertexBufferImpl->Bind();
bufferOffset = s_vertexBuffer->GetStartOffset();
vertexDeclaration = s_vertexBuffer->GetVertexDeclaration();
stride = vertexDeclaration->GetStride();
for (unsigned int i = nzAttributeUsage_FirstVertexData; i <= nzAttributeUsage_LastVertexData; ++i)
{
nzAttributeType type;
bool enabled;
unsigned int offset;
vertexDeclaration->GetAttribute(static_cast<nzAttributeUsage>(i), &enabled, &type, &offset);
if (enabled)
{
glEnableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
glVertexAttribPointer(NzOpenGL::AttributeIndex[i],
NzVertexDeclaration::GetAttributeSize(type),
NzOpenGL::AttributeType[type],
(type == nzAttributeType_Color) ? GL_TRUE : GL_FALSE,
stride,
reinterpret_cast<void*>(bufferOffset + offset));
}
else
glDisableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
}
/*if (s_instancing)
{
bufferOffset = s_instancingBuffer->GetStartOffset();
vertexDeclaration = s_instancingBuffer->GetVertexDeclaration();
stride = vertexDeclaration->GetStride();
for (unsigned int i = nzAttributeUsage_FirstInstanceData; i <= nzAttributeUsage_LastInstanceData; ++i)
{
nzAttributeType type;
bool enabled;
unsigned int offset;
vertexDeclaration->GetAttribute(static_cast<nzAttributeUsage>(i), &enabled, &offset, &type);
if (enabled)
{
glEnableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
glVertexAttribPointer(NzOpenGL::AttributeIndex[i],
NzVertexDeclaration::GetElementCount(type),
NzOpenGL::AttributeType[type],
(type == nzAttributeType_Color) ? GL_TRUE : GL_FALSE,
stride,
reinterpret_cast<void*>(bufferOffset + offset));
glVertexAttribDivisor(NzOpenGL::AttributeIndex[i], 1);
}
else
glDisableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
}
}
else
{
for (unsigned int i = nzAttributeUsage_FirstInstanceData; i <= nzAttributeUsage_LastInstanceData; ++i)
glDisableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
}*/
// Et on active l'index buffer (Un seul index buffer par VAO)
if (s_indexBuffer)
{
NzHardwareBuffer* indexBufferImpl = static_cast<NzHardwareBuffer*>(s_indexBuffer->GetBuffer()->GetImpl());
indexBufferImpl->Bind();
}
else
NzOpenGL::BindBuffer(nzBufferType_Index, 0);
}
if (s_useVertexArrayObjects)
{
// Si nous venons de définir notre VAO, nous devons le débinder pour indiquer la fin de sa construction
if (update)
glBindVertexArray(0);
// En cas de non-support des VAOs, les attributs doivent être respécifiés à chaque frame
s_updateFlags &= ~Update_VAO;
}
}
#ifdef NAZARA_DEBUG
if (s_updateFlags != Update_None && !s_useVertexArrayObjects && s_updateFlags != Update_VAO)
NazaraWarning("Update flags not fully cleared");
#endif
}
// On bind notre VAO
if (s_useVertexArrayObjects)
glBindVertexArray(s_currentVAO);
// On vérifie que les textures actuellement bindées sont bien nos textures
// Ceci à cause du fait qu'il est possible que des opérations sur les textures ait eu lieu
// entre le dernier rendu et maintenant
for (unsigned int i = 0; i < s_maxTextureUnit; ++i)
{
const NzTexture* texture = s_textureUnits[i].texture;
if (texture)
NzOpenGL::BindTexture(i, texture->GetType(), texture->GetOpenGLID());
}
// Et on termine par envoyer nos états à OpenGL
NzOpenGL::ApplyStates(s_states);
return true;
}
void NzRenderer::UpdateMatrix(nzMatrixType type)
{
#ifdef NAZARA_DEBUG
if (type > nzMatrixType_Max)
{
NazaraError("Matrix type out of enum");
return;
}
#endif
switch (type)
{
case nzMatrixType_Projection:
case nzMatrixType_View:
case nzMatrixType_World:
break;
case nzMatrixType_ViewProj:
s_matrices[nzMatrixType_ViewProj].matrix = s_matrices[nzMatrixType_View].matrix * s_matrices[nzMatrixType_Projection].matrix;
s_matrices[nzMatrixType_ViewProj].updated = true;
break;
case nzMatrixType_WorldView:
s_matrices[nzMatrixType_WorldView].matrix = s_matrices[nzMatrixType_World].matrix;
s_matrices[nzMatrixType_WorldView].matrix.ConcatenateAffine(s_matrices[nzMatrixType_View].matrix);
s_matrices[nzMatrixType_WorldView].updated = true;
break;
case nzMatrixType_WorldViewProj:
if (!s_matrices[nzMatrixType_WorldView].updated)
UpdateMatrix(nzMatrixType_WorldView);
s_matrices[nzMatrixType_WorldViewProj].matrix = s_matrices[nzMatrixType_WorldView].matrix;
s_matrices[nzMatrixType_WorldViewProj].matrix.Concatenate(s_matrices[nzMatrixType_Projection].matrix);
s_matrices[nzMatrixType_WorldViewProj].updated = true;
break;
}
}
unsigned int NzRenderer::s_moduleReferenceCounter = 0;