Improve math module (#396)

* Improve math module

- Mark almost everything constexpr
- Equality (a == b) is now exact, down to the bit level. If you want approximate equality use the new ApproxEqual method/static method
- Rename Nz::Extend to Nz::Extent
- Removed Make[] and Set[] methods in favor of their static counterpart and operator=
This commit is contained in:
Jérôme Leclercq
2023-06-02 22:30:51 +02:00
committed by GitHub
parent de88873c35
commit 1a55b550fb
64 changed files with 2200 additions and 3758 deletions

View File

@@ -26,11 +26,11 @@ namespace Nz
* \param normalZ Z component of the normal
* \param D Distance to origin
*/
template<typename T>
Plane<T>::Plane(T normalX, T normalY, T normalZ, T D)
constexpr Plane<T>::Plane(T normalX, T normalY, T normalZ, T D) :
normal(normalX, normalY, normalZ),
distance(D)
{
Set(normalX, normalY, normalZ, D);
}
/*!
@@ -38,11 +38,11 @@ namespace Nz
*
* \param plane[4] plane[0] is X component, plane[1] is Y component, plane[2] is Z component and plane[3] is D
*/
template<typename T>
Plane<T>::Plane(const T plane[4])
constexpr Plane<T>::Plane(const T plane[4]) :
normal(plane[0], plane[1], plane[2]),
distance(plane[3])
{
Set(plane);
}
/*!
@@ -51,11 +51,11 @@ namespace Nz
* \param Normal normal of the vector
* \param D Distance to origin
*/
template<typename T>
Plane<T>::Plane(const Vector3<T>& Normal, T D)
constexpr Plane<T>::Plane(const Vector3<T>& Normal, T D) :
normal(Normal),
distance(D)
{
Set(Normal, D);
}
/*!
@@ -64,11 +64,11 @@ namespace Nz
* \param Normal Normal of the plane
* \param point Point which verifies the equation of the plane
*/
template<typename T>
Plane<T>::Plane(const Vector3<T>& Normal, const Vector3<T>& point)
constexpr Plane<T>::Plane(const Vector3<T>& Normal, const Vector3<T>& point) :
normal(Normal),
distance(-Normal.DotProduct(point))
{
Set(Normal, point);
}
/*!
@@ -80,11 +80,15 @@ namespace Nz
*
* \remark They are expected not to be colinear
*/
template<typename T>
Plane<T>::Plane(const Vector3<T>& point1, const Vector3<T>& point2, const Vector3<T>& point3)
{
Set(point1, point2, point3);
Vector3<T> edge1 = point2 - point1;
Vector3<T> edge2 = point3 - point1;
normal = edge1.CrossProduct(edge2);
normal.Normalize();
distance = normal.DotProduct(point3);
}
/*!
@@ -92,12 +96,21 @@ namespace Nz
*
* \param plane Plane of type U to convert to type T
*/
template<typename T>
template<typename U>
Plane<T>::Plane(const Plane<U>& plane)
constexpr Plane<T>::Plane(const Plane<U>& plane) :
normal(Vector3<T>(plane.normal)),
distance(T(plane.distance))
{
Set(plane);
}
template<typename T>
constexpr bool Plane<T>::ApproxEqual(const Plane& plane, T maxDifference) const
{
if (!normal.ApproxEqual(plane.normal, maxDifference))
return false;
return NumberEquals(distance, plane.distance, maxDifference);
}
/*!
@@ -112,9 +125,8 @@ namespace Nz
*
* \see Distance
*/
template<typename T>
T Plane<T>::Distance(T x, T y, T z) const
constexpr T Plane<T>::Distance(T x, T y, T z) const
{
return Distance(Vector3<T>(x, y, z));
}
@@ -129,162 +141,12 @@ namespace Nz
*
* \see Distance
*/
template<typename T>
T Plane<T>::Distance(const Vector3<T>& point) const
constexpr T Plane<T>::Distance(const Vector3<T>& point) const
{
return normal.DotProduct(point) - distance; // ax + by + cd - d = 0.
}
/*!
* \brief Makes the plane (0, 0, 1, 0)
* \return A reference to this plane with components (0, 0, 1, 0)
*
* \see XY
*/
template<typename T>
Plane<T>& Plane<T>::MakeXY()
{
return Set(T(0.0), T(0.0), T(1.0), T(0.0));
}
/*!
* \brief Makes the plane (0, 1, 0, 0)
* \return A reference to this plane with components (0, 1, 0, 0)
*
* \see XZ
*/
template<typename T>
Plane<T>& Plane<T>::MakeXZ()
{
return Set(T(0.0), T(1.0), T(0.0), T(0.0));
}
/*!
* \brief Makes the plane (1, 0, 0, 0)
* \return A reference to this plane with components (1, 0, 0, 0)
*
* \see YZ
*/
template<typename T>
Plane<T>& Plane<T>::MakeYZ()
{
return Set(T(1.0), T(0.0), T(0.0), T(0.0));
}
/*!
* \brief Sets the components of the plane
* \return A reference to this plane
*
* \param normalX X component of the normal
* \param normalY Y component of the normal
* \param normalZ Z component of the normal
* \param D Distance to origin
*/
template<typename T>
Plane<T>& Plane<T>::Set(T normalX, T normalY, T normalZ, T D)
{
distance = D;
normal.Set(normalX, normalY, normalZ);
return *this;
}
/*!
* \brief Sets the components of the plane from an array of four elements
* \return A reference to this plane
*
* \param plane[4] plane[0] is X component, plane[1] is Y component, plane[2] is Z component and plane[3] is D
*/
template<typename T>
Plane<T>& Plane<T>::Set(const T plane[4])
{
normal.Set(plane[0], plane[1], plane[2]);
distance = plane[3];
return *this;
}
/*!
* \brief Sets the components of the plane from a normal and a distance
* \return A reference to this plane
*
* \param Normal Normal of the vector
* \param D Distance to origin
*/
template<typename T>
Plane<T>& Plane<T>::Set(const Vector3<T>& Normal, T D)
{
distance = D;
normal = Normal;
return *this;
}
/*!
* \brief Sets the components of the plane from a normal and a point
* \return A reference to this plane
*
* \param Normal Normal of the plane
* \param point Point which verifies the equation of the plane
*/
template<typename T>
Plane<T>& Plane<T>::Set(const Vector3<T>& Normal, const Vector3<T>& point)
{
normal = Normal;
distance = -normal.DotProduct(point);
return *this;
}
/*!
* \brief Sets the components of the plane from three points
* \return A reference to this plane
*
* \param point1 First point
* \param point2 Second point
* \param point3 Third point
*
* \remark They are expected not to be colinear
*/
template<typename T>
Plane<T>& Plane<T>::Set(const Vector3<T>& point1, const Vector3<T>& point2, const Vector3<T>& point3)
{
Vector3<T> edge1 = point2 - point1;
Vector3<T> edge2 = point3 - point1;
normal = edge1.CrossProduct(edge2);
normal.Normalize();
distance = normal.DotProduct(point3);
return *this;
}
/*!
* \brief Sets the components of the plane from another type of Plane
* \return A reference to this plane
*
* \param plane Plane of type U to convert its components
*/
template<typename T>
template<typename U>
Plane<T>& Plane<T>::Set(const Plane<U>& plane)
{
normal.Set(plane.normal);
distance = T(plane.distance);
return *this;
}
/*!
* \brief Gives a string representation
* \return A string representation of the object: "Plane(Normal: Vector3(x, y, z); Distance: w)"
@@ -309,9 +171,9 @@ namespace Nz
*/
template<typename T>
bool Plane<T>::operator==(const Plane& plane) const
constexpr bool Plane<T>::operator==(const Plane& plane) const
{
return (normal == plane.normal && NumberEquals(distance, plane.distance)) || (normal == -plane.normal && NumberEquals(distance, -plane.distance));
return normal == plane.normal && distance == plane.distance;
}
/*!
@@ -324,11 +186,17 @@ namespace Nz
*/
template<typename T>
bool Plane<T>::operator!=(const Plane& plane) const
constexpr bool Plane<T>::operator!=(const Plane& plane) const
{
return !operator==(plane);
}
template<typename T>
constexpr bool Plane<T>::ApproxEqual(const Plane& lhs, const Plane& rhs, T maxDifference)
{
return lhs.ApproxEqual(rhs, maxDifference);
}
/*!
* \brief Intersects three planes to retrieve a single intersection point
* \return The intersection point
@@ -340,7 +208,7 @@ namespace Nz
* \remark All three planes must have differents normals otherwise result is undefined
*/
template<typename T>
Vector3<T> Plane<T>::Intersect(const Plane& p0, const Plane& p1, const Plane& p2)
constexpr Vector3<T> Plane<T>::Intersect(const Plane& p0, const Plane& p1, const Plane& p2)
{
// From https://donw.io/post/frustum-point-extraction/
Vector3f bxc = Vector3f::CrossProduct(p1.normal, p2.normal);
@@ -365,7 +233,7 @@ namespace Nz
* \see Lerp
*/
template<typename T>
Plane<T> Plane<T>::Lerp(const Plane& from, const Plane& to, T interpolation)
constexpr Plane<T> Plane<T>::Lerp(const Plane& from, const Plane& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < T(0.0) || interpolation > T(1.0))
@@ -386,49 +254,31 @@ namespace Nz
/*!
* \brief Shorthand for the plane (0, 0, 1, 0)
* \return A plane with components (0, 0, 1, 0)
*
* \see MakeXY
*/
template<typename T>
Plane<T> Plane<T>::XY()
constexpr Plane<T> Plane<T>::XY()
{
Plane plane;
plane.MakeXY();
return plane;
return Plane(Vector3<T>::UnitZ(), 0);
}
/*!
* \brief Shorthand for the plane (0, 1, 0, 0)
* \return A plane with components (0, 1, 0, 0)
*
* \see MakeXZ
*/
template<typename T>
Plane<T> Plane<T>::XZ()
constexpr Plane<T> Plane<T>::XZ()
{
Plane plane;
plane.MakeXZ();
return plane;
return Plane(Vector3<T>::UnitY(), 0);
}
/*!
* \brief Shorthand for the plane (1, 0, 0, 0)
* \return A plane with components (1, 0, 0, 0)
*
* \see MakeYZ
*/
template<typename T>
Plane<T> Plane<T>::YZ()
constexpr Plane<T> Plane<T>::YZ()
{
Plane plane;
plane.MakeYZ();
return plane;
return Plane(Vector3<T>::UnitX(), 0);
}
/*!
@@ -484,3 +334,4 @@ namespace Nz
}
#include <Nazara/Core/DebugOff.hpp>
#include "Plane.hpp"