Improve math module (#396)

* Improve math module

- Mark almost everything constexpr
- Equality (a == b) is now exact, down to the bit level. If you want approximate equality use the new ApproxEqual method/static method
- Rename Nz::Extend to Nz::Extent
- Removed Make[] and Set[] methods in favor of their static counterpart and operator=
This commit is contained in:
Jérôme Leclercq
2023-06-02 22:30:51 +02:00
committed by GitHub
parent de88873c35
commit 1a55b550fb
64 changed files with 2200 additions and 3758 deletions

View File

@@ -30,11 +30,13 @@ namespace Nz
* \param Y Y component
* \param Z Z component
*/
template<typename T>
Quaternion<T>::Quaternion(T W, T X, T Y, T Z)
constexpr Quaternion<T>::Quaternion(T W, T X, T Y, T Z) :
w(W),
x(X),
y(Y),
z(Z)
{
Set(W, X, Y, Z);
}
/*!
@@ -44,9 +46,9 @@ namespace Nz
*/
template<typename T>
template<AngleUnit Unit>
Quaternion<T>::Quaternion(const Angle<Unit, T>& angle)
Quaternion<T>::Quaternion(const Angle<Unit, T>& angle) :
Quaternion(angle.ToQuaternion())
{
Set(angle);
}
/*!
@@ -57,9 +59,9 @@ namespace Nz
* \see EulerAngles
*/
template<typename T>
Quaternion<T>::Quaternion(const EulerAngles<T>& angles)
Quaternion<T>::Quaternion(const EulerAngles<T>& angles) :
Quaternion(angles.ToQuaternion())
{
Set(angles);
}
/*!
@@ -68,11 +70,21 @@ namespace Nz
* \param angle Angle to rotate along the axis
* \param axis Vector3 which represents a direction, no need to be normalized
*/
template<typename T>
Quaternion<T>::Quaternion(RadianAngle<T> angle, const Vector3<T>& axis)
constexpr Quaternion<T>::Quaternion(RadianAngle<T> angle, const Vector3<T>& axis)
{
Set(angle, axis);
angle /= T(2.0);
Vector3<T> normalizedAxis = axis.GetNormal();
auto sincos = angle.GetSinCos();
w = sincos.second;
x = normalizedAxis.x * sincos.first;
y = normalizedAxis.y * sincos.first;
z = normalizedAxis.z * sincos.first;
Normalize();
}
/*!
@@ -80,21 +92,15 @@ namespace Nz
*
* \param quat[4] quat[0] is W component, quat[1] is X component, quat[2] is Y component and quat[3] is Z component
*/
template<typename T>
Quaternion<T>::Quaternion(const T quat[4])
constexpr Quaternion<T>::Quaternion(const T quat[4]) :
w(quat[0]),
x(quat[1]),
y(quat[2]),
z(quat[3])
{
Set(quat);
}
/*
template<typename T>
Quaternion<T>::Quaternion(const Matrix3<T>& mat)
{
Set(mat);
}
*/
/*!
* \brief Constructs a Quaternion object from another type of Quaternion
*
@@ -103,16 +109,27 @@ namespace Nz
template<typename T>
template<typename U>
Quaternion<T>::Quaternion(const Quaternion<U>& quat)
constexpr Quaternion<T>::Quaternion(const Quaternion<U>& quat) :
w(static_cast<T>(quat.w)),
x(static_cast<T>(quat.x)),
y(static_cast<T>(quat.y)),
z(static_cast<T>(quat.z))
{
Set(quat);
}
template<typename T>
constexpr bool Quaternion<T>::ApproxEqual(const Quaternion& quat, T maxDifference) const
{
return NumberEquals(w, quat.w, maxDifference) &&
NumberEquals(x, quat.x, maxDifference) &&
NumberEquals(y, quat.y, maxDifference) &&
NumberEquals(z, quat.z, maxDifference);
}
/*!
* \brief Computes the w component of the quaternion to make it unit
* \return A reference to this quaternion
*/
template<typename T>
Quaternion<T>& Quaternion<T>::ComputeW()
{
@@ -134,9 +151,8 @@ namespace Nz
*
* \see GetConjugate
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Conjugate()
constexpr Quaternion<T>& Quaternion<T>::Conjugate()
{
x = -x;
y = -y;
@@ -151,9 +167,8 @@ namespace Nz
*
* \param quat The other quaternion to calculate the dot product with
*/
template<typename T>
T Quaternion<T>::DotProduct(const Quaternion& quat) const
constexpr T Quaternion<T>::DotProduct(const Quaternion& quat) const
{
return w * quat.w + x * quat.x + y * quat.y + z * quat.z;
}
@@ -166,9 +181,8 @@ namespace Nz
*
* \see Conjugate
*/
template<typename T>
Quaternion<T> Quaternion<T>::GetConjugate() const
constexpr Quaternion<T> Quaternion<T>::GetConjugate() const
{
Quaternion<T> quat(*this);
quat.Conjugate();
@@ -184,7 +198,6 @@ namespace Nz
*
* \see Inverse
*/
template<typename T>
Quaternion<T> Quaternion<T>::GetInverse() const
{
@@ -204,7 +217,6 @@ namespace Nz
*
* \see Normalize
*/
template<typename T>
Quaternion<T> Quaternion<T>::GetNormal(T* length) const
{
@@ -222,7 +234,6 @@ namespace Nz
*
* \see GetInverse
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Inverse()
{
@@ -240,81 +251,12 @@ namespace Nz
return *this;
}
/*!
* \brief Makes the quaternion (1, 0, 0, 0)
* \return A reference to this vector with components (1, 0, 0, 0)
*
* \see Unit
*/
template<typename T>
Quaternion<T>& Quaternion<T>::MakeIdentity()
{
return Set(T(1.0), T(0.0), T(0.0), T(0.0));
}
/*!
* \brief Makes this quaternion to the rotation required to rotate direction Vector3 from to direction Vector3 to
* \return A reference to this vector which is the rotation needed
*
* \param from Initial vector
* \param to Target vector
*
* \remark Vectors are not required to be normalized
*
* \see RotationBetween
*/
template<typename T>
Quaternion<T>& Quaternion<T>::MakeRotationBetween(const Vector3<T>& from, const Vector3<T>& to)
{
T dot = from.DotProduct(to);
if (dot < T(-0.999999))
{
Vector3<T> crossProduct;
if (from.DotProduct(Vector3<T>::UnitX()) < T(0.999999))
crossProduct = Vector3<T>::UnitX().CrossProduct(from);
else
crossProduct = Vector3<T>::UnitY().CrossProduct(from);
crossProduct.Normalize();
Set(Pi<T>, crossProduct);
return *this;
}
else if (dot > T(0.999999))
{
Set(T(1.0), T(0.0), T(0.0), T(0.0));
return *this;
}
else
{
T norm = std::sqrt(from.GetSquaredLength() * to.GetSquaredLength());
Vector3<T> crossProduct = from.CrossProduct(to);
Set(norm + dot, crossProduct.x, crossProduct.y, crossProduct.z);
return Normalize();
}
}
/*!
* \brief Makes the quaternion (0, 0, 0, 0)
* \return A reference to this vector with components (0, 0, 0, 0)
*
* \see Zero
*/
template<typename T>
Quaternion<T>& Quaternion<T>::MakeZero()
{
return Set(T(0.0), T(0.0), T(0.0), T(0.0));
}
/*!
* \brief Calculates the magnitude (length) of the quaternion
* \return The magnitude
*
* \see SquaredMagnitude
*/
template<typename T>
T Quaternion<T>::Magnitude() const
{
@@ -331,7 +273,6 @@ namespace Nz
*
* \see GetNormal
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Normalize(T* length)
{
@@ -351,127 +292,14 @@ namespace Nz
return *this;
}
/*!
* \brief Sets the components of the quaternion
* \return A reference to this quaternion
*
* \param W W component
* \param X X component
* \param Y Y component
* \param Z Z component
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(T W, T X, T Y, T Z)
{
w = W;
x = X;
y = Y;
z = Z;
return *this;
}
/*!
* \brief Sets this quaternion from a 2D rotation specified by an Angle
* \return A reference to this quaternion
*
* \param angle 2D angle
*
* \see Angle
*/
template<typename T>
template<AngleUnit Unit>
Quaternion<T>& Quaternion<T>::Set(const Angle<Unit, T>& angle)
{
return Set(angle.ToQuaternion());
}
/*!
* \brief Sets this quaternion from rotation specified by Euler angle
* \return A reference to this quaternion
*
* \param angles Easier representation of rotation of space
*
* \see EulerAngles
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(const EulerAngles<T>& angles)
{
return Set(angles.ToQuaternion());
}
/*!
* \brief Sets this quaternion from rotation specified by axis and angle
* \return A reference to this quaternion
*
* \param angle Angle to rotate along the axis
* \param axis Vector3 which represents a direction, no need to be normalized
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(RadianAngle<T> angle, const Vector3<T>& axis)
{
angle /= T(2.0);
Vector3<T> normalizedAxis = axis.GetNormal();
auto sincos = angle.GetSinCos();
w = sincos.second;
x = normalizedAxis.x * sincos.first;
y = normalizedAxis.y * sincos.first;
z = normalizedAxis.z * sincos.first;
return Normalize();
}
/*!
* \brief Sets the components of the quaternion from an array of four elements
* \return A reference to this quaternion
*
* \param quat[4] quat[0] is W component, quat[1] is X component, quat[2] is Y component and quat[3] is Z component
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(const T quat[4])
{
w = quat[0];
x = quat[1];
y = quat[2];
z = quat[3];
return *this;
}
/*!
* \brief Sets the components of the quaternion from another type of Quaternion
* \return A reference to this quaternion
*
* \param quat Quaternion of type U to convert its components
*/
template<typename T>
template<typename U>
Quaternion<T>& Quaternion<T>::Set(const Quaternion<U>& quat)
{
w = T(quat.w);
x = T(quat.x);
y = T(quat.y);
z = T(quat.z);
return *this;
}
/*!
* \brief Calculates the squared magnitude (length) of the quaternion
* \return The squared magnitude
*
* \see Magnitude
*/
template<typename T>
T Quaternion<T>::SquaredMagnitude() const
constexpr T Quaternion<T>::SquaredMagnitude() const
{
return w * w + x * x + y * y + z * z;
}
@@ -518,7 +346,6 @@ namespace Nz
* \brief Gives a string representation
* \return A string representation of the object: "Quaternion(w | x, y, z)"
*/
template<typename T>
std::string Quaternion<T>::ToString() const
{
@@ -534,9 +361,8 @@ namespace Nz
*
* \param quat The other quaternion to add components with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator+(const Quaternion& quat) const
constexpr Quaternion<T> Quaternion<T>::operator+(const Quaternion& quat) const
{
Quaternion result;
result.w = w + quat.w;
@@ -553,9 +379,8 @@ namespace Nz
*
* \param quat The other quaternion to multiply with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator*(const Quaternion& quat) const
constexpr Quaternion<T> Quaternion<T>::operator*(const Quaternion& quat) const
{
Quaternion result;
result.w = w * quat.w - x * quat.x - y * quat.y - z * quat.z;
@@ -572,9 +397,8 @@ namespace Nz
*
* \param vec The vector to multiply with
*/
template<typename T>
Vector3<T> Quaternion<T>::operator*(const Vector3<T>& vec) const
constexpr Vector3<T> Quaternion<T>::operator*(const Vector3<T>& vec) const
{
Vector3<T> quatVec(x, y, z);
Vector3<T> uv = quatVec.CrossProduct(vec);
@@ -591,9 +415,8 @@ namespace Nz
*
* \param scale The scalar to multiply components with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator*(T scale) const
constexpr Quaternion<T> Quaternion<T>::operator*(T scale) const
{
return Quaternion(w * scale,
x * scale,
@@ -607,9 +430,8 @@ namespace Nz
*
* \param quat The other quaternion to divide with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator/(const Quaternion& quat) const
constexpr Quaternion<T> Quaternion<T>::operator/(const Quaternion& quat) const
{
return quat.GetConjugate() * (*this);
}
@@ -620,9 +442,8 @@ namespace Nz
*
* \param quat The other quaternion to add components with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator+=(const Quaternion& quat)
constexpr Quaternion<T>& Quaternion<T>::operator+=(const Quaternion& quat)
{
return operator=(operator+(quat));
}
@@ -633,9 +454,8 @@ namespace Nz
*
* \param quat The other quaternion to multiply with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator*=(const Quaternion& quat)
constexpr Quaternion<T>& Quaternion<T>::operator*=(const Quaternion& quat)
{
return operator=(operator*(quat));
}
@@ -646,9 +466,8 @@ namespace Nz
*
* \param scale The scalar to multiply components with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator*=(T scale)
constexpr Quaternion<T>& Quaternion<T>::operator*=(T scale)
{
return operator=(operator*(scale));
}
@@ -659,9 +478,8 @@ namespace Nz
*
* \param quat The other quaternion to divide with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator/=(const Quaternion& quat)
constexpr Quaternion<T>& Quaternion<T>::operator/=(const Quaternion& quat)
{
return operator=(operator/(quat));
}
@@ -672,14 +490,10 @@ namespace Nz
*
* \param quat Other quaternion to compare with
*/
template<typename T>
bool Quaternion<T>::operator==(const Quaternion& quat) const
constexpr bool Quaternion<T>::operator==(const Quaternion& quat) const
{
return NumberEquals(w, quat.w) &&
NumberEquals(x, quat.x) &&
NumberEquals(y, quat.y) &&
NumberEquals(z, quat.z);
return w == quat.w && x == quat.x && y == quat.y && z == quat.z;
}
/*!
@@ -688,27 +502,90 @@ namespace Nz
*
* \param quat Other quaternion to compare with
*/
template<typename T>
bool Quaternion<T>::operator!=(const Quaternion& quat) const
constexpr bool Quaternion<T>::operator!=(const Quaternion& quat) const
{
return !operator==(quat);
}
template<typename T>
constexpr bool Quaternion<T>::operator<(const Quaternion& quat) const
{
if (w != quat.w)
return w < quat.w;
if (x != quat.x)
return x < quat.x;
if (y != quat.y)
return y < quat.y;
if (z != quat.z)
return z < quat.z;
}
template<typename T>
constexpr bool Quaternion<T>::operator<=(const Quaternion& quat) const
{
if (w != quat.w)
return w < quat.w;
if (x != quat.x)
return x < quat.x;
if (y != quat.y)
return y < quat.y;
if (z != quat.z)
return z <= quat.z;
}
template<typename T>
constexpr bool Quaternion<T>::operator>(const Quaternion& quat) const
{
if (w != quat.w)
return w > quat.w;
if (x != quat.x)
return x > quat.x;
if (y != quat.y)
return y > quat.y;
if (z != quat.z)
return z > quat.z;
}
template<typename T>
constexpr bool Quaternion<T>::operator>=(const Quaternion& quat) const
{
if (w != quat.w)
return w > quat.w;
if (x != quat.x)
return x > quat.x;
if (y != quat.y)
return y > quat.y;
if (z != quat.z)
return z >= quat.z;
}
template<typename T>
constexpr bool Quaternion<T>::ApproxEqual(const Quaternion& lhs, const Quaternion& rhs, T maxDifference)
{
return lhs.ApproxEqual(rhs, maxDifference);
}
/*!
* \brief Shorthand for the quaternion (1, 0, 0, 0)
* \return A quaternion with components (1, 0, 0, 0)
*
* \see MakeIdentity
*/
template<typename T>
Quaternion<T> Quaternion<T>::Identity()
constexpr Quaternion<T> Quaternion<T>::Identity()
{
Quaternion quaternion;
quaternion.MakeIdentity();
return quaternion;
return Quaternion(1, 0, 0, 0);
}
/*!
@@ -725,7 +602,7 @@ namespace Nz
* \see Lerp, Slerp
*/
template<typename T>
Quaternion<T> Quaternion<T>::Lerp(const Quaternion& from, const Quaternion& to, T interpolation)
constexpr Quaternion<T> Quaternion<T>::Lerp(const Quaternion& from, const Quaternion& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < T(0.0) || interpolation > T(1.0))
@@ -780,7 +657,6 @@ namespace Nz
*
* \see GetNormal
*/
template<typename T>
Quaternion<T> Quaternion<T>::Normalize(const Quaternion& quat, T* length)
{
@@ -793,17 +669,31 @@ namespace Nz
*
* \param from Initial vector
* \param to Target vector
*
* \see MakeRotationBetween
*/
template<typename T>
Quaternion<T> Quaternion<T>::RotationBetween(const Vector3<T>& from, const Vector3<T>& to)
{
Quaternion quaternion;
quaternion.MakeRotationBetween(from, to);
T dot = from.DotProduct(to);
if (dot < T(-0.999999))
{
Vector3<T> crossProduct;
if (from.DotProduct(Vector3<T>::UnitX()) < T(0.999999))
crossProduct = Vector3<T>::UnitX().CrossProduct(from);
else
crossProduct = Vector3<T>::UnitY().CrossProduct(from);
return quaternion;
crossProduct.Normalize();
return Quaternion(Pi<T>, crossProduct);
}
else if (dot > T(0.999999))
return Quaternion(1, 0, 0, 0);
else
{
T norm = std::sqrt(from.GetSquaredLength() * to.GetSquaredLength());
Vector3<T> crossProduct = from.CrossProduct(to);
return Quaternion(norm + dot, crossProduct.x, crossProduct.y, crossProduct.z).GetNormal();
}
}
template<typename T>
@@ -833,7 +723,6 @@ namespace Nz
*
* \see Lerp
*/
template<typename T>
Quaternion<T> Quaternion<T>::Slerp(const Quaternion& from, const Quaternion& to, T interpolation)
{
@@ -851,11 +740,11 @@ namespace Nz
if (cosOmega < T(0.0))
{
// We invert everything
q.Set(-to.w, -to.x, -to.y, -to.z);
q = Quaternion(-to.w, -to.x, -to.y, -to.z);
cosOmega = -cosOmega;
}
else
q.Set(to);
q = Quaternion(to);
T k0, k1;
if (cosOmega > T(0.9999))
@@ -883,20 +772,13 @@ namespace Nz
/*!
* \brief Shorthand for the quaternion (0, 0, 0, 0)
* \return A quaternion with components (0, 0, 0, 0)
*
* \see MakeZero
*/
template<typename T>
Quaternion<T> Quaternion<T>::Zero()
constexpr Quaternion<T> Quaternion<T>::Zero()
{
Quaternion quaternion;
quaternion.MakeZero();
return quaternion;
return Quaternion(0, 0, 0, 0);
}
/*!
* \brief Serializes a Quaternion
* \return true if successfully serialized
@@ -962,3 +844,4 @@ namespace Nz
}
#include <Nazara/Core/DebugOff.hpp>
#include "Quaternion.hpp"