Improve math module (#396)

* Improve math module

- Mark almost everything constexpr
- Equality (a == b) is now exact, down to the bit level. If you want approximate equality use the new ApproxEqual method/static method
- Rename Nz::Extend to Nz::Extent
- Removed Make[] and Set[] methods in favor of their static counterpart and operator=
This commit is contained in:
Jérôme Leclercq
2023-06-02 22:30:51 +02:00
committed by GitHub
parent de88873c35
commit 1a55b550fb
64 changed files with 2200 additions and 3758 deletions

View File

@@ -103,44 +103,44 @@ SCENARIO("Matrix4", "[MATH][MATRIX4]")
{
THEN("Rotation around X")
{
transformedMatrix.MakeTransform(Nz::Vector3f::Zero(), Nz::EulerAnglesf(Nz::DegreeAnglef(45.f), 0.f, 0.f).ToQuaternion());
transformedMatrix = Nz::Matrix4f::Transform(Nz::Vector3f::Zero(), Nz::EulerAnglesf(Nz::DegreeAnglef(45.f), 0.f, 0.f).ToQuaternion());
Nz::Matrix4f rotation45X(1.f, 0.f, 0.f, 0.f,
0.f, std::sqrt(2.f) / 2.f, std::sqrt(2.f) / 2.f, 0.f,
0.f, -std::sqrt(2.f) / 2.f, std::sqrt(2.f) / 2.f, 0.f,
0.f, 0.f, 0.f, 1.f);
CHECK(transformedMatrix == rotation45X);
transformedMatrix.MakeTransform(Nz::Vector3f::Unit(), Nz::EulerAnglesf(Nz::DegreeAnglef(45.f), 0.f, 0.f).ToQuaternion());
CHECK(transformedMatrix.ApproxEqual(rotation45X));
transformedMatrix = Nz::Matrix4f::Transform(Nz::Vector3f::Unit(), Nz::EulerAnglesf(Nz::DegreeAnglef(45.f), 0.f, 0.f).ToQuaternion());
rotation45X.ApplyTranslation(Nz::Vector3f::Unit());
CHECK(transformedMatrix == rotation45X);
CHECK(transformedMatrix.ApproxEqual(rotation45X));
}
THEN("Rotation around Y")
{
transformedMatrix.MakeTransform(Nz::Vector3f::Zero(), Nz::EulerAnglesf(0.f, Nz::DegreeAnglef(45.f), 0.f).ToQuaternion());
transformedMatrix = Nz::Matrix4f::Transform(Nz::Vector3f::Zero(), Nz::EulerAnglesf(0.f, Nz::DegreeAnglef(45.f), 0.f).ToQuaternion());
Nz::Matrix4f rotation45Y(std::sqrt(2.f) / 2.f, 0.f, -std::sqrt(2.f) / 2.f, 0.f,
0.f, 1.f, 0.f, 0.f,
std::sqrt(2.f) / 2.f, 0.f, std::sqrt(2.f) / 2.f, 0.f,
0.f, 0.f, 0.f, 1.f);
CHECK(transformedMatrix == rotation45Y);
transformedMatrix.MakeTransform(Nz::Vector3f::Unit(), Nz::EulerAnglesf(0.f, Nz::DegreeAnglef(45.f), 0.f).ToQuaternion());
CHECK(transformedMatrix.ApproxEqual(rotation45Y));
transformedMatrix = Nz::Matrix4f::Transform(Nz::Vector3f::Unit(), Nz::EulerAnglesf(0.f, Nz::DegreeAnglef(45.f), 0.f).ToQuaternion());
rotation45Y.ApplyTranslation(Nz::Vector3f::Unit());
CHECK(transformedMatrix == rotation45Y);
CHECK(transformedMatrix.ApproxEqual(rotation45Y));
}
THEN("Rotation around Z")
{
transformedMatrix.MakeTransform(Nz::Vector3f::Zero(), Nz::EulerAnglesf(0.f, 0.f, Nz::DegreeAnglef(45.f)).ToQuaternion());
transformedMatrix = Nz::Matrix4f::Transform(Nz::Vector3f::Zero(), Nz::EulerAnglesf(0.f, 0.f, Nz::DegreeAnglef(45.f)).ToQuaternion());
Nz::Matrix4f rotation45Z( std::sqrt(2.f) / 2.f, std::sqrt(2.f) / 2.f, 0.f, 0.f,
-std::sqrt(2.f) / 2.f, std::sqrt(2.f) / 2.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, 0.f, 0.f, 1.f);
CHECK(transformedMatrix == rotation45Z);
transformedMatrix.MakeTransform(Nz::Vector3f::Unit(), Nz::EulerAnglesf(Nz::EulerAnglesf(0.f, 0.f, Nz::DegreeAnglef(45.f)).ToQuaternion()));
CHECK(transformedMatrix.ApproxEqual(rotation45Z));
transformedMatrix = Nz::Matrix4f::Transform(Nz::Vector3f::Unit(), Nz::EulerAnglesf(Nz::EulerAnglesf(0.f, 0.f, Nz::DegreeAnglef(45.f)).ToQuaternion()));
rotation45Z.ApplyTranslation(Nz::Vector3f::Unit());
CHECK(transformedMatrix == rotation45Z);
CHECK(transformedMatrix.ApproxEqual(rotation45Z));
}
}
}
@@ -196,7 +196,7 @@ SCENARIO("Matrix4", "[MATH][MATRIX4]")
THEN("We should retrieve it")
{
REQUIRE(identity.GetRotation() == rotation);
REQUIRE(identity.GetRotation().ApproxEqual(rotation));
}
}