Resolved conflicts

Former-commit-id: 4bd4e4f8435d701d16d3864dd030a6c1cff48c47
This commit is contained in:
Lynix 2012-12-02 21:49:14 +01:00
commit 780da2cfa5
46 changed files with 1251 additions and 1283 deletions

View File

@ -1,39 +1,14 @@
#include <Nazara/3D/Model.hpp>
#include <Nazara/Core/Clock.hpp>
#include <Nazara/Math/Quaternion.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <Nazara/Renderer/ContextParameters.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/RenderWindow.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/Texture.hpp>
#include <Nazara/Utility/Image.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Math.hpp>
#include <Nazara/Renderer.hpp>
#include <Nazara/Utility.hpp>
#include <iostream>
#include <map>
// Une structure pour contenir nos informations (Cette structure est très simpliste)
struct Model
{
NzMatrix4f matrix; // Les transformations subies par le modèle
NzMesh mesh; // Le mesh
NzTexture texture; // Sa texture
};
struct AnimatedModel : public Model
{
// Quelques variables pour l'animation
const NzSequence* currentSequence = nullptr; // La séquence en cours
float interpolation = 0.f; // La valeur de l'interpolation ([0..1], si dépasse 1, on passe à la frame suivante)
unsigned int currentFrame = 0; // La première frame
unsigned int nextFrame; // La seconde frame, l'animation est interpollée entre ces deux-là
};
void AnimateModel(AnimatedModel& moedel, float elapsed);
bool CreateCheckerTexture(NzTexture* texture);
bool CreateFloorMesh(NzMesh* mesh);
void DrawModel(const Model& model);
void SetSequence(AnimatedModel& model, const NzString& name);
bool CreateCheckerMaterial(NzMaterial* material);
bool CreateFloorModel(NzModel* model);
void DrawModel(const NzModel& model);
int main()
{
@ -57,6 +32,8 @@ int main()
return EXIT_FAILURE;
}
NzDebugDrawer::Initialize();
// Maintenant nous pouvons utiliser le moteur comme bon nous semble, tout d'abord nous allons charger les ressources
// Charger une ressource se fait actuellement manuellement, mais un ResourceManager est à venir
@ -70,22 +47,22 @@ int main()
// qu'elles sont fourniees avec le mesh.
// -Pour les animations squelettiques, le loader ne fera que charger automatiquement l'animation associée au mesh s'il le peut
// Dans les deux cas, les paramètres d'animations (parameters.animation) seront utilisés
parameters.loadAnimations = true; // Vaut true par défaut
parameters.animated = true; // Vaut true par défaut
// Pour qu'un mesh puisse être rendu, il doit être stocké du côté de la carte graphique (Hardware), mais il est parfois utile de
// le stocker côté RAM, par exemple pour le moteur physique. En sachant qu'il est facile de changer le stockage d'un buffer.
parameters.storage = nzBufferStorage_Hardware; // Vaut nzBufferStorage_Hardware par défaut
parameters.storage = nzBufferStorage_Hardware; // Vaut nzBufferStorage_Hardware par défaut si possible et nzBufferStorage_Software autrement.
AnimatedModel drfreak;
if (!drfreak.mesh.LoadFromFile("resources/drfreak.md2", parameters)) // On charge notre bon vieux docteur avec les paramètres de chargement.
NzModel drfreak;
if (!drfreak.LoadFromFile("resources/drfreak.md2")) // On charge notre bon vieux docteur avec les paramètres de chargement.
{
// Le chargement n'a pas fonctionné, le modèle est peut-être corrompu/non-supporté, ou alors n'existe pas.
std::cout << "Failed to load mesh" << std::endl;
std::cout << "Failed to load Dr. Freak" << std::endl;
std::getchar(); // On laise le temps de voir l'erreur
return EXIT_FAILURE;
}
if (!drfreak.mesh.HasAnimation()) // Le mesh possède-t-il des animations ?
if (!drfreak.HasAnimation()) // Le mesh possède-t-il des animations ?
{
// Cette démo n'a aucun intérêt sans animations
std::cout << "Mesh has no animation" << std::endl;
@ -93,49 +70,15 @@ int main()
return EXIT_FAILURE;
}
SetSequence(drfreak, "stand");
// Il est possible que le mesh possède un ou plusieurs skin, nous utiliserons cette information pour charger une texture
if (drfreak.mesh.HasSkin())
{
// Contrairement aux autres ressources, la texture n'est pas critique
if (drfreak.texture.LoadFromFile("resources/" + drfreak.mesh.GetSkin()))
drfreak.texture.SetFilterMode(nzTextureFilter_Bilinear); // Appliquons-lui un filtrage bilinéaire
else
std::cout << "Failed to load texture" << std::endl;
}
if (!drfreak.texture.IsValid()) // Les méthodes Resource::IsValid indiquent si la ressource a été correctement créée
{
std::cout << "Creating checker texture for mesh" << std::endl;
if (!CreateCheckerTexture(&drfreak.texture))
{
std::cout << "Failed to create mesh texture" << std::endl;
std::getchar();
return EXIT_FAILURE;
}
}
// Nous créons maintenant notre sol
Model floor;
if (!CreateFloorMesh(&floor.mesh))
NzModel floor;
if (!CreateFloorModel(&floor))
{
std::cout << "Failed to create floor" << std::endl;
std::getchar();
return EXIT_FAILURE;
}
if (!CreateCheckerTexture(&floor.texture))
{
std::cout << "Failed to create floor texture" << std::endl;
std::getchar();
return EXIT_FAILURE;
}
// Le sol ne subit aucune transformation
floor.matrix.MakeIdentity();
// Pour effectuer un rendu, il faut que la carte graphique sache comment le faire.
// Les shaders sont de petits programmes qui donnent des instructions à la carte graphique lors de son pipeline.
// Ils sont aujourd'hui indispensables pour un rendu 3D, mais sont très utiles pour divers effets !
@ -189,12 +132,15 @@ int main()
// Un VideoMode est une structure contenant une longueur (width), une largeur (height) et le nombre de bits par pixels (bitsPerPixel)
NzVideoMode mode = NzVideoMode::GetDesktopMode(); // Nous récupérons le mode actuellement utilisé par le bureau
// Nous divisons sa longueur et sa largeur par deux
mode.width /= 2;
mode.height /= 2;
// Nous allons prendre les trois quarts de la résolution du bureau pour notre fenêtre
//mode.width *= 3.f/4.f;
//mode.height *= 3.f/4.f;
mode.width = 1280;
mode.height = 720;
// 720p power !
// Maintenant le titre, rien de plus simple...
NzString windowTitle = "Nazara Demo - AnimatedMesh";
NzString windowTitle = "Nazara Demo - Skeletal mesh test";
// Nous pouvons créer notre fenêtre ! (Via le constructeur directement ou par la méthode Create)
NzRenderWindow window;
@ -217,32 +163,26 @@ int main()
window.SetCursor(nzWindowCursor_None);
// Nous limitons les FPS à 100
window.SetFramerateLimit(100);
//window.SetFramerateLimit(100);
// La matrice de projection définit la transformation du vertice 3D à un point 2D
NzRenderer::SetMatrix(nzMatrixType_Projection, NzMatrix4f::Perspective(NzDegrees(70.f), static_cast<float>(window.GetWidth())/window.GetHeight(), 1.f, 1000.f));
NzRenderer::SetMatrix(nzMatrixType_Projection, NzMatrix4f::Perspective(NzDegrees(70.f), static_cast<float>(window.GetWidth())/window.GetHeight(), 1.f, 10000.f));
// Notre fenêtre est créée, cependant il faut s'occuper d'elle, pour le rendu et les évènements
NzClock secondClock, updateClock; // Des horloges pour gérer le temps
unsigned int fps = 0; // Compteur de FPS
// Quelques variables pour notre improvisation de physique
float groundPos = drfreak.mesh.GetAABB().GetMinimum().y; // Les coordonnées locales du "bas" du modèle
NzVector3f modelPos(0.f, -groundPos, -50.f);
NzVector3f modelVel(0.f, 0.f, 0.f);
NzQuaternionf modelOrient(NzQuaternionf::Identity());
NzEulerAnglesf modelRot(0.f, 0.f, 0.f);
float modelSpeed = 150.f;
// Nous initialisons la matrice
drfreak.matrix = NzMatrix4f::Rotate(modelOrient) * NzMatrix4f::Translate(modelPos);
float modelSpeed = 250.f;
// Notre caméra
NzVector3f camPos(0.f, 25.f, -20.f);
NzQuaternionf camOrient(NzQuaternionf::Identity());
NzEulerAnglesf camRot(0.f, 0.f, 0.f); // Les angles d'eulers sont bien plus facile à utiliser
NzMatrix4f camMatrix = NzMatrix4f::Translate(camPos);
float camSpeed = 100.f;
NzEulerAnglesf camRot(0.f, 180.f, 0.f); // Les angles d'eulers sont bien plus facile à utiliser
NzNode camera;
camera.SetTranslation(0.f, 50.f, -50.f);
camera.SetRotation(camRot);
NzVector3f camSpeed(100.f);
float sensitivity = 0.8f;
// Quelques variables
@ -251,6 +191,40 @@ int main()
bool thirdPerson = false;
bool windowOpen = true;
NzClock loadClock;
NzModel hellknight;
//if (!LoadModel("resources/mm/snoutx10k.md5mesh", params, &hellknight))
//if (!LoadModel("resources/Boblamp/boblampclean.md5mesh", params, &hellknight))
if (!hellknight.LoadFromFile("resources/hellknight.md5mesh"))
{
std::cout << "Failed to load mesh" << std::endl;
return 0;
}
NzAnimation* hellknightAnimation = new NzAnimation;
//if (!hellknightAnimation.LoadFromFile("resources/mm/idle.md5anim"))
//if (!hellknightAnimation.LoadFromFile("resources/Boblamp/boblampclean.md5anim"))0
if (!hellknightAnimation->LoadFromFile("resources/hellknight/walk7.md5anim"))
{
std::cout << "Failed to load animation" << std::endl;
delete hellknightAnimation;
return 0;
}
hellknightAnimation->SetPersistent(false, false);
hellknight.SetAnimation(hellknightAnimation);
std::cout << "Loaded in " << loadClock.GetSeconds() << std::endl;
bool drawAabb = false;
bool drawSkeleton = false;
bool drawHellknight = true;
bool drawWireframe = false;
NzClock secondClock, updateClock; // Des horloges pour gérer le temps
// On peut commencer la boucle du programme
while (windowOpen)
{
@ -280,8 +254,7 @@ int main()
// La matrice vue représente les transformations effectuées par la caméra
// On recalcule la matrice de la caméra et on l'envoie au renderer
camOrient = camRot; // Conversion des angles d'euler en quaternion
NzRenderer::SetMatrix(nzMatrixType_View, NzMatrix4f::LookAt(camPos, camPos + camOrient * NzVector3f::Forward()));
camera.SetRotation(camRot); // Conversion des angles d'euler en quaternion
// Pour éviter que le curseur ne sorte de l'écran, nous le renvoyons au centre de la fenêtre
NzMouse::SetPosition(window.GetWidth()/2, window.GetHeight()/2, window);
@ -309,10 +282,11 @@ int main()
if (thirdPerson)
{
// On arrête le mouvement
SetSequence(drfreak, "stand");
drfreak.SetSequence("stand");
// Afin de synchroniser le quaternion avec les angles d'euler
camRot = camOrient.ToEulerAngles();
camRot = camera.GetDerivedRotation().ToEulerAngles();
thirdPerson = false;
}
else
@ -324,25 +298,75 @@ int main()
NzRenderer::SetViewport(NzRectui(0, 0, event.size.width, event.size.height)); // Adaptons l'affichage
// Il nous faut aussi mettre à jour notre matrice de projection
NzRenderer::SetMatrix(nzMatrixType_Projection, NzMatrix4f::Perspective(NzDegrees(70.f), static_cast<float>(event.size.width)/event.size.height, 1.f, 1000.f));
NzRenderer::SetMatrix(nzMatrixType_Projection, NzMatrix4f::Perspective(NzDegrees(70.f), static_cast<float>(event.size.width)/event.size.height, 1.f, 10000.f));
break;
case nzEventType_KeyPressed: // Une touche du clavier vient d'être enfoncée
if (thirdPerson &&
(event.key.code == NzKeyboard::Z || // Est-ce la touche Z ?
event.key.code == NzKeyboard::S || // Ou bien la touche S ?
event.key.code == NzKeyboard::Q || // Ou encore la touche Q ?
event.key.code == NzKeyboard::D)) // Et pourquoi pas la touche D ?
{
switch (event.key.code)
{
// Si une touche concernant le déplacement est appuyée
SetSequence(drfreak, "run"); // On anime le personnage pour qu'il ait une animation de déplacement
case NzKeyboard::Z:
case NzKeyboard::S:
case NzKeyboard::Q:
case NzKeyboard::D:
if (thirdPerson)
drfreak.SetSequence("run");
break;
case NzKeyboard::Escape:
windowOpen = false;
break;
case NzKeyboard::P:
paused = !paused;
break;
case NzKeyboard::F1:
if (drawWireframe)
{
drawWireframe = false;
NzRenderer::SetFaceFilling(nzFaceFilling_Fill);
}
else
{
drawWireframe = true;
NzRenderer::SetFaceFilling(nzFaceFilling_Line);
}
break;
case NzKeyboard::F2:
drawAabb = !drawAabb;
break;
case NzKeyboard::F3:
drawSkeleton = !drawSkeleton;
break;
case NzKeyboard::F4:
drawHellknight = !drawHellknight;
break;
/*case NzKeyboard::F5:
{
NzString animationName;
std::cin >> animationName;
if (!hellknightAnimation.LoadFromFile("resources/mm/" + animationName + ".md5anim"))
{
std::cout << "Failed to load animation" << std::endl;
break;
}
SetSequence(hellknight, 0);
break;
}*/
default:
break;
}
else if (event.key.code == NzKeyboard::Escape)
windowOpen = false;
else if (event.key.code == NzKeyboard::P)
paused = !paused;
break;
}
case nzEventType_KeyReleased: // Une touche du clavier vient d'être relachée
if (thirdPerson &&
@ -352,7 +376,7 @@ int main()
!NzKeyboard::IsKeyPressed(NzKeyboard::D)) // Etc..
{
// Si plus aucune touche de déplacement n'est enfoncée
SetSequence(drfreak, "stand");
drfreak.SetSequence("stand");
}
break;
@ -380,68 +404,71 @@ int main()
// Nous déplaçons le personnage en fonction des touches pressées
if (NzKeyboard::IsKeyPressed(NzKeyboard::Z))
modelPos += modelOrient * forward * modelSpeed * elapsedTime;
drfreak.Translate(forward * modelSpeed * elapsedTime);
if (NzKeyboard::IsKeyPressed(NzKeyboard::S))
modelPos -= modelOrient * forward * modelSpeed * elapsedTime;
drfreak.Translate(-forward * modelSpeed * elapsedTime);
if (NzKeyboard::IsKeyPressed(NzKeyboard::Q))
modelRot.yaw += camSpeed * elapsedTime;
drfreak.Rotate(NzEulerAnglesf(0.f, modelSpeed * elapsedTime, 0.f));
if (NzKeyboard::IsKeyPressed(NzKeyboard::D))
modelRot.yaw -= camSpeed * elapsedTime;
modelOrient = modelRot;
drfreak.Rotate(NzEulerAnglesf(0.f, -modelSpeed * elapsedTime, 0.f));
}
else
{
// Sinon, c'est la caméra qui se déplace (en fonction des mêmes touches)
// Un boost en maintenant le shift gauche
float speed = (NzKeyboard::IsKeyPressed(NzKeyboard::Key::LShift)) ? camSpeed*5 : camSpeed;
NzVector3f speed = (NzKeyboard::IsKeyPressed(NzKeyboard::Key::LShift)) ? camSpeed*5 : camSpeed;
if (NzKeyboard::IsKeyPressed(NzKeyboard::Z))
camPos += camOrient * forward * speed * elapsedTime;
camera.Translate(forward * speed * elapsedTime);
if (NzKeyboard::IsKeyPressed(NzKeyboard::S))
camPos -= camOrient * forward * speed * elapsedTime;
camera.Translate(-forward * speed * elapsedTime);
if (NzKeyboard::IsKeyPressed(NzKeyboard::Q))
camPos += camOrient * left * speed * elapsedTime;
camera.Translate(left * speed * elapsedTime);
if (NzKeyboard::IsKeyPressed(NzKeyboard::D))
camPos -= camOrient * left * speed * elapsedTime;
camera.Translate(-left * speed * elapsedTime);
// En revanche, ici la hauteur est toujours la même, peu importe notre orientation
if (NzKeyboard::IsKeyPressed(NzKeyboard::Space))
camPos += up * speed * elapsedTime;
camera.Translate(up * speed * elapsedTime, nzCoordSys_Global);
if (NzKeyboard::IsKeyPressed(NzKeyboard::LControl))
camPos -= up * speed * elapsedTime;
camera.Translate(up * speed * elapsedTime, nzCoordSys_Global);
}
// Oui les quaternions et les matrices sont calculés même si la caméra ne bouge pas
// C'est une limitation de mon implémentation, qui ne sera pas présente une fois les NzSceneNode intégrés
if (thirdPerson)
{
static NzQuaternionf rotDown(NzEulerAnglesf(-15.f, 0.f, 0.f)); // Une rotation pour regarder vers le bas
camOrient = modelOrient * rotDown;
static NzQuaternionf rotDown(NzEulerAnglesf(-35.f, 0.f, 0.f)); // Une rotation pour regarder vers le bas
camera.SetRotation(drfreak.GetDerivedRotation() * rotDown);
camPos = modelPos + camOrient * NzVector3f(0.f, 25.f, 60.f);
camera.SetTranslation(drfreak.GetDerivedTranslation() + camera.GetDerivedRotation() * NzVector3f(0.f, 30.f, 50.f));
}
NzRenderer::SetMatrix(nzMatrixType_View, NzMatrix4f::LookAt(camPos, camPos + camOrient * NzVector3f::Forward()));
// Mise à jour de la matrice du personnage
drfreak.matrix = NzMatrix4f::Rotate(modelOrient) * NzMatrix4f::Translate(modelPos);
// Animation
if (!paused)
AnimateModel(drfreak, elapsedTime);
{
drfreak.Update(elapsedTime);
hellknight.Update(elapsedTime);
/*AnimateModel(hellknight, elapsedTime);
hellknight.mesh.GetSkeleton()->GetJoint("luparm")->SetScale(2.f);
hellknight.mesh.Skin(hellknight.mesh.GetSkeleton());*/
}
updateClock.Restart();
}
NzRenderer::SetMatrix(nzMatrixType_View, NzMatrix4f::LookAt(camera.GetDerivedTranslation(), camera.GetDerivedTranslation() + camera.GetDerivedRotation() * NzVector3f::Forward()));
NzVector3f translation = drfreak.GetTranslation();
translation.y = -drfreak.GetMesh()->GetAABB().GetMinimum().y;
drfreak.SetTranslation(translation);
// On active le shader et paramètrons le rendu
NzRenderer::SetShader(&shader);
@ -457,11 +484,39 @@ int main()
// Affichage des meshs
DrawModel(floor);
// Notre Dr. Freak possède des normales, nous pouvons alors éliminer les faces qu'on ne voit pas
// On élimine les faces qu'on ne voit pas
NzRenderer::Enable(nzRendererParameter_FaceCulling, true);
DrawModel(drfreak);
if (drawHellknight)
DrawModel(hellknight);
if (drawSkeleton)
{
NzDebugDrawer::SetDepthTest(false);
NzDebugDrawer::SetPrimaryColor(NzColor::Blue);
NzDebugDrawer::Draw(hellknight.GetSkeleton());
}
if (drawAabb)
{
/* NzDebugDrawer::SetDepthTest(true);
NzDebugDrawer::SetPrimaryColor(NzColor::Red);
NzDebugDrawer::Draw(hellknight.mesh.GetAABB());*/
NzAxisAlignedBox aabb(drfreak.GetMesh()->GetAABB());
aabb.Transform(drfreak.GetTransformMatrix());
NzRenderer::SetMatrix(nzMatrixType_World, NzMatrix4f::Translate(drfreak.GetDerivedTranslation()));
NzDebugDrawer::SetPrimaryColor(NzColor::Red);
NzDebugDrawer::Draw(aabb);
NzRenderer::SetMatrix(nzMatrixType_World, drfreak.GetTransformMatrix());
NzDebugDrawer::SetPrimaryColor(NzColor::Blue);
NzDebugDrawer::Draw(drfreak.GetMesh()->GetAABB());
}
NzRenderer::Enable(nzRendererParameter_FaceCulling, false);
// Nous mettons à jour l'écran
@ -478,32 +533,19 @@ int main()
}
}
NzDebugDrawer::Uninitialize();
return EXIT_SUCCESS;
}
void AnimateModel(AnimatedModel& model, float elapsed)
{
model.interpolation += model.currentSequence->framePerSecond * elapsed;
while (model.interpolation > 1.f)
{
model.interpolation -= 1.f;
model.currentFrame = model.nextFrame;
if (++model.nextFrame > model.currentSequence->lastFrame)
model.nextFrame = model.currentSequence->firstFrame;
}
model.mesh.Animate(model.currentFrame, model.nextFrame, (NzKeyboard::IsKeyPressed(NzKeyboard::A)) ? 0.f : model.interpolation);
}
bool CreateCheckerTexture(NzTexture* texture)
bool CreateCheckerMaterial(NzMaterial* material)
{
NzImage image;
// Nous crééons une image 2D, au format RGBA8 de dimensions 128*128 (8 blocs de 16 pixels de côté)
if (!image.Create(nzImageType_2D, nzPixelFormat_RGBA8, 8*16, 8*16))
{
// Ne devrait pas arriver (La création d'une image ne peut échouer que si l'un des argument est incorrect)
std::cout << "Failed to create image, this means a bug has been found in Nazara" << std::endl;
std::cout << "Failed to create image, this means that a bug has been found in Nazara" << std::endl;
return false;
}
@ -522,6 +564,7 @@ bool CreateCheckerTexture(NzTexture* texture)
}
}
NzTexture* texture = new NzTexture;
if (!texture->LoadFromImage(image)) // Nous créons notre texture depuis notre image
{
// Nous n'avons vraiment pas beaucoup de chance..
@ -532,18 +575,24 @@ bool CreateCheckerTexture(NzTexture* texture)
texture->SetAnisotropyLevel(NzRenderer::GetMaxAnisotropyLevel()); // Un filtrage anisotropique pour la texture
texture->SetWrapMode(nzTextureWrap_Repeat); // Si les coordonnées de texture dépassent 1.f, la texture sera répétée
material->SetDiffuseMap(texture);
texture->SetPersistent(false);
return true;
}
bool CreateFloorMesh(NzMesh* mesh)
bool CreateFloorModel(NzModel* model)
{
// Cette fonction créé un mesh statique simpliste pour servir de sol
NzMesh* mesh = new NzMesh;
// Nous créons un mesh statique
if (!mesh->Create(nzAnimationType_Static))
if (!mesh->CreateStatic())
{
// L'échec est techniquement impossible mais le moteur étant en constante évolution ...
std::cout << "Failed to create mesh" << std::endl;
delete mesh;
return false;
}
@ -575,7 +624,7 @@ bool CreateFloorMesh(NzMesh* mesh)
// Nous créons ensuite un buffer de 4 vertices (le second argument précise l'espace pris par chaque vertex), le stockage
// Et nous indiquons que nous n'y toucherons plus
NzVertexBuffer* buffer = new NzVertexBuffer(4, declaration->GetStride(nzElementStream_VertexData), nzBufferStorage_Hardware, nzBufferUsage_Static);
NzVertexBuffer* buffer = new NzVertexBuffer(declaration, 4, nzBufferStorage_Hardware, nzBufferUsage_Static);
// Doit respecter la declaration
float vertices[] =
@ -605,16 +654,18 @@ bool CreateFloorMesh(NzMesh* mesh)
}
NzStaticMesh* subMesh = new NzStaticMesh(mesh);
if (!subMesh->Create(declaration, buffer))
if (!subMesh->Create(buffer))
{
std::cout << "Failed to create subMesh" << std::endl;
return false;
}
subMesh->SetMaterialIndex(0);
subMesh->SetPrimitiveType(nzPrimitiveType_TriangleStrip);
// On ajoute le submesh au mesh
mesh->AddSubMesh(subMesh);
mesh->SetMaterialCount(1);
// Nos ressources sont notifiées utilisées par le mesh et le submesh, nous pouvons les rendre éphèmères.
// Les ressources seront donc automatiquement libérées lorsqu'elles ne seront plus référencées par une classe
@ -622,46 +673,46 @@ bool CreateFloorMesh(NzMesh* mesh)
declaration->SetPersistent(false);
subMesh->SetPersistent(false); // Pour le submesh, c'est déjà le comportement par défaut
NzModelParameters params;
params.loadAnimation = false;
params.loadMaterials = false;
model->SetMesh(mesh, params);
mesh->SetPersistent(false);
NzMaterial* material = new NzMaterial;
CreateCheckerMaterial(material);
model->SetMaterial(0, material);
material->SetPersistent(false);
return true;
}
void DrawModel(const Model& model)
void DrawModel(const NzModel& model)
{
// La matrice world est celle qui représente les transformations du modèle
NzRenderer::SetMatrix(nzMatrixType_World, model.matrix);
NzShader* shader = NzRenderer::GetShader();// On récupère le shader du rendu
shader->SendTexture(shader->GetUniformLocation("texture"), &model.texture);
NzRenderer::SetMatrix(nzMatrixType_World, model.GetTransformMatrix());
// Un mesh est divisé en plusieurs submeshes
unsigned int subMeshCount = model.mesh.GetSubMeshCount();
unsigned int subMeshCount = model.GetMesh()->GetSubMeshCount();
for (unsigned int i = 0; i < subMeshCount; ++i)
{
// On récupère le submesh
const NzSubMesh* subMesh = model.mesh.GetSubMesh(i);
const NzSubMesh* subMesh = model.GetMesh()->GetSubMesh(i);
NzRenderer::ApplyMaterial(model.GetMaterial(i));
// On paramètre le Renderer avec ses données
NzRenderer::SetIndexBuffer(subMesh->GetIndexBuffer());
NzRenderer::SetVertexBuffer(subMesh->GetVertexBuffer());
NzRenderer::SetVertexDeclaration(subMesh->GetVertexDeclaration());
// On fait le rendu
NzRenderer::DrawPrimitives(subMesh->GetPrimitiveType(), 0, subMesh->GetVertexCount());
}
}
void SetSequence(AnimatedModel& model, const NzString& sequenceName)
{
// On récupère l'animation du mesh
const NzAnimation* animation = model.mesh.GetAnimation();
// Nous nous basons sur l'assertion que la séquence existe (Chose que nous pouvons tester avec HasSequence())
const NzSequence* sequence = animation->GetSequence(sequenceName);
if (model.currentSequence != sequence)
{
model.currentSequence = sequence;
// Pour avoir une interpolation entre la séquence précédente et celle-ci, nous n'affectons que nextFrame
model.nextFrame = model.currentSequence->firstFrame;
const NzIndexBuffer* indexBuffer = subMesh->GetIndexBuffer();
if (indexBuffer)
{
NzRenderer::SetIndexBuffer(indexBuffer);
NzRenderer::DrawIndexedPrimitives(subMesh->GetPrimitiveType(), 0, indexBuffer->GetIndexCount());
}
else
NzRenderer::DrawPrimitives(subMesh->GetPrimitiveType(), 0, subMesh->GetVertexCount());
}
}

View File

@ -2,9 +2,9 @@
varying vec2 TexCoord;
uniform sampler2D texture;
uniform sampler2D diffuseMap;
void main()
{
gl_FragColor = texture2D(texture, TexCoord);
gl_FragColor = texture2D(diffuseMap, TexCoord);
}

View File

@ -43,6 +43,7 @@
#include <Nazara/Core/File.hpp>
#include <Nazara/Core/Format.hpp>
#include <Nazara/Core/Functor.hpp>
#include <Nazara/Core/HardwareInfo.hpp>
#include <Nazara/Core/Hash.hpp>
#include <Nazara/Core/Hashable.hpp>
#include <Nazara/Core/HashDigest.hpp>
@ -61,6 +62,7 @@
#include <Nazara/Core/Stream.hpp>
#include <Nazara/Core/String.hpp>
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Core/TaskScheduler.hpp>
#include <Nazara/Core/Thread.hpp>
#include <Nazara/Core/Tuple.hpp>
#include <Nazara/Core/Unicode.hpp>

View File

@ -0,0 +1,21 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_ABSTRACT2DNOISE_HPP
#define NAZARA_ABSTRACT2DNOISE_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/MappedNoiseBase.hpp>
class NAZARA_API NzAbstract2DNoise : public NzMappedNoiseBase
{
public:
float GetBasicValue(float x, float y);
float GetMappedValue(float x, float y);
virtual float GetValue(float x, float y, float resolution) = 0;
};
#endif // NAZARA_ABSTRACT2DNOISE_HPP

View File

@ -0,0 +1,21 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_ABSTRACT3DNOISE_HPP
#define NAZARA_ABSTRACT3DNOISE_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/MappedNoiseBase.hpp>
class NAZARA_API NzAbstract3DNoise : public NzMappedNoiseBase
{
public:
float GetBasicValue(float x, float y, float z);
float GetMappedValue(float x, float y, float z);
virtual float GetValue(float x, float y, float z, float resolution) = 0;
};
#endif // NAZARA_ABSTRACT3DNOISE_HPP

View File

@ -0,0 +1,21 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_ABSTRACT4DNOISE_HPP
#define NAZARA_ABSTRACT4DNOISE_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/MappedNoiseBase.hpp>
class NAZARA_API NzAbstract4DNoise : public NzMappedNoiseBase
{
public:
float GetBasicValue(float x, float y, float z, float w);
float GetMappedValue(float x, float y, float z, float w);
virtual float GetValue(float x, float y, float z, float w, float resolution) = 0;
};
#endif // NAZARA_ABSTRACT4DNOISE_HPP

View File

@ -8,16 +8,19 @@
#define COMPLEXNOISEBASE_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <array>
class NAZARA_API NzComplexNoiseBase : public NzNoiseBase
class NAZARA_API NzComplexNoiseBase
{
public:
NzComplexNoiseBase();
~NzComplexNoiseBase() = default;
void SetLacunarity(float lacunarity);
float GetHurstParameter() const;
float GetLacunarity() const;
float GetOctaveNumber() const;
void SetHurstParameter(float h);
void SetLacunarity(float lacunarity);
void SetOctavesNumber(float octaves);
void RecomputeExponentArray();
@ -25,11 +28,10 @@ class NAZARA_API NzComplexNoiseBase : public NzNoiseBase
float m_lacunarity;
float m_hurst;
float m_octaves;
float exponent_array[30];
std::array<float, 30> m_exponent_array;
float m_sum;
private:
bool m_parametersModified;
};
#endif // COMPLEXNOISEBASE_HPP

View File

@ -0,0 +1,28 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef FBM2D_HPP
#define FBM2D_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Noise/Abstract2DNoise.hpp>
class NAZARA_API NzFBM2D : public NzAbstract2DNoise, public NzComplexNoiseBase
{
public:
NzFBM2D(nzNoises source, unsigned int seed);
float GetValue(float x, float y, float resolution);
~NzFBM2D();
protected:
private:
NzAbstract2DNoise* m_source;
float m_value;
float m_remainder;
nzNoises m_noiseType;
};
#endif // FBM2D_HPP

View File

@ -0,0 +1,29 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef FBM3D_HPP
#define FBM3D_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Noise/Abstract3DNoise.hpp>
class NAZARA_API NzFBM3D : public NzAbstract3DNoise, public NzComplexNoiseBase
{
public:
NzFBM3D(nzNoises source, unsigned int seed);
float GetValue(float x, float y, float z, float resolution);
~NzFBM3D();
protected:
private:
NzAbstract3DNoise* m_source;
float m_value;
float m_remainder;
nzNoises m_noiseType;
};
#endif // FBM3D_HPP

View File

@ -0,0 +1,29 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef FBM4D_HPP
#define FBM4D_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Noise/Abstract4DNoise.hpp>
class NAZARA_API NzFBM4D : public NzAbstract4DNoise, public NzComplexNoiseBase
{
public:
NzFBM4D(nzNoises source, unsigned int seed);
float GetValue(float x, float y, float z, float w, float resolution);
~NzFBM4D();
protected:
private:
NzAbstract4DNoise* m_source;
float m_value;
float m_remainder;
nzNoises m_noiseType;
};
#endif // FBM4D_HPP

View File

@ -0,0 +1,32 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef HYBRIDMULTIFRACTAL3D_HPP
#define HYBRIDMULTIFRACTAL3D_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Noise/Abstract3DNoise.hpp>
class NAZARA_API NzHybridMultiFractal3D : public NzAbstract3DNoise, public NzComplexNoiseBase
{
public:
NzHybridMultiFractal3D(nzNoises source, unsigned int seed);
float GetValue(float x, float y, float z, float resolution);
~NzHybridMultiFractal3D();
protected:
private:
NzAbstract3DNoise* m_source;
float m_value;
float m_remainder;
float m_offset;
float m_weight;
float m_signal;
nzNoises m_noiseType;
};
#endif // HYBRIDMULTIFRACTAL3D_HPP

View File

@ -0,0 +1,32 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef HYBRIDMULTIFRACTAL4D_HPP
#define HYBRIDMULTIFRACTAL4D_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Noise/Abstract4DNoise.hpp>
class NAZARA_API NzHybridMultiFractal4D : public NzAbstract4DNoise, public NzComplexNoiseBase
{
public:
NzHybridMultiFractal4D(nzNoises source, unsigned int seed);
float GetValue(float x, float y, float z, float w, float resolution);
~NzHybridMultiFractal4D();
protected:
private:
NzAbstract4DNoise* m_source;
float m_value;
float m_remainder;
float m_offset;
float m_weight;
float m_signal;
nzNoises m_noiseType;
};
#endif // HYBRIDMULTIFRACTAL4D_HPP

View File

@ -0,0 +1,32 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef HYBRIDMULTIFRACTAL2D_HPP
#define HYBRIDMULTIFRACTAL2D_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Noise/Abstract2DNoise.hpp>
class NAZARA_API NzHybridMultiFractal2D : public NzAbstract2DNoise, public NzComplexNoiseBase
{
public:
NzHybridMultiFractal2D(nzNoises source, unsigned int seed);
float GetValue(float x, float y, float resolution);
~NzHybridMultiFractal2D();
protected:
private:
NzAbstract2DNoise* m_source;
float m_value;
float m_remainder;
float m_offset;
float m_weight;
float m_signal;
nzNoises m_noiseType;
};
#endif // HYBRIDMULTIFRACTAL2D_HPP

View File

@ -0,0 +1,31 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_MAPPEDNOISEBASE_HPP
#define NAZARA_MAPPEDNOISEBASE_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
class NAZARA_API NzMappedNoiseBase : public NzNoiseBase
{
public:
NzMappedNoiseBase();
~NzMappedNoiseBase() = default;
float GetGain() const;
float GetOffset() const;
float GetResolution() const;
void SetGain(float gain);
void SetOffset(float offset);
void SetResolution(float resolution);
protected:
float m_gain;
float m_offset;
float m_resolution;
};
#endif // NAZARA_MAPPEDNOISEBASE_HPP

View File

@ -9,24 +9,33 @@
#include <Nazara/Prerequesites.hpp>
enum nzNoises
{
PERLIN,
SIMPLEX,
CELL
};
class NAZARA_API NzNoiseBase
{
public:
NzNoiseBase(int seed = 0);
NzNoiseBase(unsigned int seed = 0);
~NzNoiseBase() = default;
void SetNewSeed(int seed);
int GetUniformRandomValue();
void SetNewSeed(unsigned int seed);
void ShufflePermutationTable();
unsigned int GetUniformRandomValue();
int fastfloor(float n);
int JenkinsHash(int a, int b, int c);
protected:
int perm[512];
unsigned int perm[512];
private:
int Ua, Uc, Um;
int UcurrentSeed;
int Uprevious, Ulast;
unsigned int Ua, Uc, Um;
unsigned int UcurrentSeed;
unsigned int Uprevious, Ulast;
};

View File

@ -1,93 +0,0 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine - Noise module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NOISEMACHINE_HPP
#define NOISEMACHINE_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <Nazara/Math/Vector2.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <Nazara/Math/Vector4.hpp>
class NAZARA_API NzNoiseMachine : public NzComplexNoiseBase
{
public:
NzNoiseMachine(int seed = 0);
~NzNoiseMachine() = default;
float Get2DPerlinNoiseValue (float x, float y, float res);
float Get3DPerlinNoiseValue (float x, float y, float z, float res);
float Get4DPerlinNoiseValue (float x, float y, float z, float w, float res);
float Get2DSimplexNoiseValue(float x, float y, float res);
float Get3DSimplexNoiseValue(float x, float y, float z, float res);
float Get4DSimplexNoiseValue(float x, float y, float z, float w, float res);
float Get2DCellNoiseValue(float x, float y, float res);
float Get3DCellNoiseValue(float x, float y, float z, float res);
float Get4DCellNoiseValue(float x, float y, float z, float w, float res);
float Get2DFBMNoiseValue(float x, float y, float res);
float Get3DFBMNoiseValue(float x, float y, float z, float res);
float Get2DHybridMultiFractalNoiseValue(float x, float y, float res);
float Get3DHybridMultiFractalNoiseValue(float x, float y, float z, float res);
protected:
private:
float gradient2[8][2];
int gradient3[16][3];
int gradient4[32][4];
int lookupTable4D[64][4];
//----------------------- Common variables --------------------------------------
int ii,jj,kk,ll;
int gi0,gi1,gi2,gi3,gi4,gi5,gi6,gi7,gi8,gi9,gi10,gi11,gi12,gi13,gi14,gi15;
//----------------------- Simplex variables --------------------------------------
float n1, n2, n3, n4, n5;
NzVector4f d1,d2,d3,d4,d5,unskewedCubeOrigin,unskewedDistToOrigin;
NzVector4i off1, off2,off3,skewedCubeOrigin;
float c1,c2,c3,c4,c5,c6;
int c;
float SkewCoeff2D;
float UnskewCoeff2D;
float SkewCoeff3D;
float UnskewCoeff3D;
float SkewCoeff4D;
float UnskewCoeff4D;
float sum;
//----------------------- Perlin Variables -------------------------------------
int x0,y0,z0,w0;
float Li1,Li2,Li3,Li4,Li5,Li6,Li7,Li8,Li9,Li10,Li11,Li12,Li13,Li14;
float s[4],t[4],u[4],v[4];
float Cx, Cy, Cz, Cw;
NzVector4f temp;
float tmp;
//---------------------- Complex Noise Variables --------------------------------
bool first;
float value;
float remainder;
float smax;
float smin;
};
#endif // NOISEMACHINE_HPP

View File

@ -9,30 +9,27 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <Nazara/Noise/Abstract2DNoise.hpp>
#include <Nazara/Math/Vector2.hpp>
template <typename T> class NAZARA_API NzPerlin2D : public NzNoiseBase
class NAZARA_API NzPerlin2D : public NzAbstract2DNoise
{
public:
NzPerlin2D();
T GetValue(T x, T y, T res);
NzPerlin2D(unsigned int seed);
float GetValue(float x, float y, float resolution);
~NzPerlin2D() = default;
protected:
private:
int x0, y0;
int gi0,gi1,gi2,gi3;
int ii, jj;
T gradient2[8][2];
T s,t,u,v;
T Cx,Cy;
T Li1, Li2;
NzVector2<T> temp;
float gradient2[8][2];
float s,t,u,v;
float Cx,Cy;
float Li1, Li2;
NzVector2<float> temp;
};
typedef NzPerlin2D<float> NzPerlin2Df;
typedef NzPerlin2D<double> NzPerlin2Dd;
#include <Nazara/Noise/Perlin2D.inl>
#endif // PERLIN2D_HPP

View File

@ -9,32 +9,28 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <Nazara/Noise/Abstract3DNoise.hpp>
#include <Nazara/Math/Vector3.hpp>
template <typename T> class NAZARA_API NzPerlin3D : public NzNoiseBase
class NAZARA_API NzPerlin3D : public NzAbstract3DNoise
{
public:
NzPerlin3D();
T GetValue(T x, T y, T z, T res);
NzPerlin3D(unsigned int seed);
float GetValue(float x, float y, float z, float resolution);
~NzPerlin3D() = default;
protected:
private:
int x0,y0,z0;
int gi0,gi1,gi2,gi3,gi4,gi5,gi6,gi7;
int ii,jj,kk;
int gradient3[16][3];
T Li1,Li2,Li3,Li4,Li5,Li6;
T s[2],t[2],u[2],v[2];
T Cx,Cy,Cz;
T nx,ny,nz;
T tmp;
NzVector3<T> temp;
float gradient3[16][3];
float Li1,Li2,Li3,Li4,Li5,Li6;
float s[2],t[2],u[2],v[2];
float Cx,Cy,Cz;
float nx,ny,nz;
float tmp;
NzVector3<float> temp;
};
typedef NzPerlin3D<float> NzPerlin3Df;
typedef NzPerlin3D<double> NzPerlin3Dd;
#include <Nazara/Noise/Perlin3D.inl>
#endif // PERLIN3D_HPP

View File

@ -9,32 +9,27 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <Nazara/Noise/Abstract4DNoise.hpp>
#include <Nazara/Math/Vector4.hpp>
template <typename T> class NAZARA_API NzPerlin4D : public NzNoiseBase
class NAZARA_API NzPerlin4D : public NzAbstract4DNoise
{
public:
NzPerlin4D();
T GetValue(T x, T y, T z, T w, T res);
NzPerlin4D(unsigned int seed);
float GetValue(float x, float y, float z, float w, float resolution);
~NzPerlin4D() = default;
protected:
private:
int x0,y0,z0,w0;
int gi0,gi1,gi2,gi3,gi4,gi5,gi6,gi7,gi8,gi9,gi10,gi11,gi12,gi13,gi14,gi15;
int ii,jj,kk,ll;
int gradient4[32][4];
T Li1,Li2,Li3,Li4,Li5,Li6,Li7,Li8,Li9,Li10,Li11,Li12,Li13,Li14;
T s[4],t[4],u[4],v[4];
T Cx,Cy,Cz,Cw;
T nx,ny,nz,nw;
T tmp;
NzVector4<T> temp;
float gradient4[32][4];
float Li1,Li2,Li3,Li4,Li5,Li6,Li7,Li8,Li9,Li10,Li11,Li12,Li13,Li14;
float s[4],t[4],u[4],v[4];
float Cx,Cy,Cz,Cw;
float tmp;
NzVector4<float> temp;
};
typedef NzPerlin4D<float> NzPerlin4Df;
typedef NzPerlin4D<double> NzPerlin4Dd;
#include <Nazara/Noise/Perlin4D.inl>
#endif // PERLIN4D_HPP

View File

@ -9,35 +9,30 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <Nazara/Noise/Abstract2DNoise.hpp>
#include <Nazara/Math/Vector2.hpp>
template <typename T> class NAZARA_API NzSimplex2D : public NzNoiseBase
class NAZARA_API NzSimplex2D : public NzAbstract2DNoise
{
public:
NzSimplex2D();
T GetValue(T x, T y, T res);
~NzSimplex2D() = default;
NzSimplex2D(unsigned int seed);
float GetValue(float x, float y, float resolution);
virtual ~NzSimplex2D() = default;
protected:
private:
int ii,jj;
int gi0,gi1,gi2;
NzVector2i skewedCubeOrigin,off1;
T n1,n2,n3;
T c1,c2,c3;
T gradient2[8][2];
T UnskewCoeff2D;
T SkewCoeff2D;
T sum;
NzVector2<T> unskewedCubeOrigin, unskewedDistToOrigin;
NzVector2<T> d1,d2,d3;
float n1,n2,n3;
float c1,c2,c3;
float gradient2[8][2];
float UnskewCoeff2D;
float SkewCoeff2D;
float sum;
NzVector2<float> unskewedCubeOrigin, unskewedDistToOrigin;
NzVector2<float> d1,d2,d3;
};
typedef NzSimplex2D<float> NzSimplex2Df;
typedef NzSimplex2D<double> NzSimplex2Dd;
#include <Nazara/Noise/Simplex2D.inl>
#endif // SIMPLEX2D_HPP

View File

@ -9,35 +9,30 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <Nazara/Noise/Abstract3DNoise.hpp>
#include <Nazara/Math/Vector3.hpp>
template <typename T> class NAZARA_API NzSimplex3D : public NzNoiseBase
class NAZARA_API NzSimplex3D : public NzAbstract3DNoise
{
public:
NzSimplex3D();
T GetValue(T x, T y, T z, T res);
NzSimplex3D(unsigned int seed);
float GetValue(float x, float y, float z, float resolution);
~NzSimplex3D() = default;
protected:
private:
int ii,jj,kk;
int gi0,gi1,gi2,gi3;
NzVector3i skewedCubeOrigin,off1,off2;
T n1,n2,n3,n4;
T c1,c2,c3,c4;
T gradient3[12][3];
T UnskewCoeff3D;
T SkewCoeff3D;
T sum;
NzVector3<T> unskewedCubeOrigin, unskewedDistToOrigin;
NzVector3<T> d1,d2,d3,d4;
float n1,n2,n3,n4;
float c1,c2,c3,c4;
float gradient3[12][3];
float UnskewCoeff3D;
float SkewCoeff3D;
float sum;
NzVector3<float> unskewedCubeOrigin, unskewedDistToOrigin;
NzVector3<float> d1,d2,d3,d4;
};
typedef NzSimplex3D<float> NzSimplex3Df;
typedef NzSimplex3D<double> NzSimplex3Dd;
#include <Nazara/Noise/Simplex3D.inl>
#endif // SIMPLEX3D_HPP

View File

@ -9,37 +9,32 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Noise/NoiseBase.hpp>
#include <Nazara/Noise/Abstract4DNoise.hpp>
#include <Nazara/Math/Vector4.hpp>
template <typename T> class NAZARA_API NzSimplex4D : public NzNoiseBase
class NAZARA_API NzSimplex4D : public NzAbstract4DNoise
{
public:
NzSimplex4D();
T GetValue(T x, T y, T z, T w, T res);
NzSimplex4D(unsigned int seed);
float GetValue(float x, float y, float z, float w, float resolution);
~NzSimplex4D() = default;
protected:
private:
int ii,jj,kk,ll;
int gi0,gi1,gi2,gi3,gi4;
NzVector4i skewedCubeOrigin,off1,off2,off3;
T n1,n2,n3,n4,n5;
T c1,c2,c3,c4,c5,c6;
T gradient4[32][4];
int lookupTable4D[64][4];
int c;
T UnskewCoeff4D;
T SkewCoeff4D;
T sum;
NzVector4<T> unskewedCubeOrigin, unskewedDistToOrigin;
NzVector4<T> d1,d2,d3,d4,d5;
float n1,n2,n3,n4,n5;
float c1,c2,c3,c4,c5,c6;
float gradient4[32][4];
float UnskewCoeff4D;
float SkewCoeff4D;
float sum;
NzVector4<float> unskewedCubeOrigin, unskewedDistToOrigin;
NzVector4<float> d1,d2,d3,d4,d5;
};
typedef NzSimplex4D<float> NzSimplex4Df;
typedef NzSimplex4D<double> NzSimplex4Dd;
#include <Nazara/Noise/Simplex4D.inl>
#endif // SIMPLEX4D_H

View File

@ -34,6 +34,7 @@
#include <Nazara/Renderer/ContextParameters.hpp>
#include <Nazara/Renderer/DebugDrawer.hpp>
#include <Nazara/Renderer/Enums.hpp>
#include <Nazara/Renderer/Material.hpp>
#include <Nazara/Renderer/OcclusionQuery.hpp>
#include <Nazara/Renderer/OpenGL.hpp>
#include <Nazara/Renderer/Renderer.hpp>
@ -42,6 +43,7 @@
#include <Nazara/Renderer/RenderTexture.hpp>
#include <Nazara/Renderer/RenderWindow.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/ShaderBuilder.hpp>
#include <Nazara/Renderer/Texture.hpp>
#endif // NAZARA_GLOBAL_RENDERER_HPP

View File

@ -158,7 +158,9 @@ enum nzTextureFilter
nzTextureFilter_Nearest,
nzTextureFilter_Trilinear,
nzTextureFilter_Max = nzTextureFilter_Trilinear
nzTextureFilter_Default,
nzTextureFilter_Max = nzTextureFilter_Default
};
enum nzTextureWrap

View File

@ -47,6 +47,7 @@ class NAZARA_API NzMaterial : public NzResource
NzColor GetSpecularColor() const;
const NzTexture* GetSpecularMap() const;
nzBlendFunc GetSrcBlend() const;
nzTextureFilter GetTextureFilter() const;
nzRendererComparison GetZTestCompare() const;
bool IsAlphaBlendingEnabled() const;
@ -69,6 +70,8 @@ class NAZARA_API NzMaterial : public NzResource
void SetSpecularColor(const NzColor& specular);
void SetSpecularMap(const NzTexture* map);
void SetSrcBlend(nzBlendFunc func);
void SetTextureFilter(nzTextureFilter filter);
void SetTextureWrap(nzTextureWrap wrapMode);
void SetZTestCompare(nzRendererComparison compareFunc);
static const NzMaterial* GetDefault();
@ -79,6 +82,8 @@ class NAZARA_API NzMaterial : public NzResource
nzFaceCulling m_faceCulling;
nzFaceFilling m_faceFilling;
nzRendererComparison m_zTestCompareFunc;
nzTextureFilter m_textureFilter;
nzTextureWrap m_textureWrap;
NzColor m_ambientColor;
NzColor m_diffuseColor;
NzColor m_specularColor;

View File

@ -43,6 +43,8 @@ class NAZARA_API NzTexture : public NzResource, NzNonCopyable
unsigned int GetWidth() const;
nzTextureWrap GetWrapMode() const;
bool HasMipmaps() const;
bool IsCompressed() const;
bool IsCubemap() const;
bool IsTarget() const;

View File

@ -0,0 +1,20 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Debug.hpp>
#include <Nazara/Noise/Abstract2DNoise.hpp>
float NzAbstract2DNoise::GetBasicValue(float x, float y)
{
return this->GetValue(x,y,m_resolution);
}
float NzAbstract2DNoise::GetMappedValue(float x, float y)
{
return (this->GetValue(x,y,m_resolution) + m_offset) * m_gain;
}

View File

@ -0,0 +1,20 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Debug.hpp>
#include <Nazara/Noise/Abstract3DNoise.hpp>
float NzAbstract3DNoise::GetBasicValue(float x, float y, float z)
{
return this->GetValue(x,y,z,m_resolution);
}
float NzAbstract3DNoise::GetMappedValue(float x, float y, float z)
{
return (this->GetValue(x,y,z,m_resolution) + m_offset) * m_gain ;
}

View File

@ -0,0 +1,20 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Debug.hpp>
#include <Nazara/Noise/Abstract4DNoise.hpp>
float NzAbstract4DNoise::GetBasicValue(float x, float y, float z, float w)
{
return this->GetValue(x,y,z,w,m_resolution);
}
float NzAbstract4DNoise::GetMappedValue(float x, float y, float z, float w)
{
return (this->GetValue(x,y,z,w,m_resolution) + m_offset) * m_gain ;
}

View File

@ -1,12 +1,12 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine - Noise module"
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Noise/ComplexNoiseBase.hpp>
#include <cmath>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Debug.hpp>
#include <Nazara/Noise/ComplexNoiseBase.hpp>
NzComplexNoiseBase::NzComplexNoiseBase()
{
@ -14,33 +14,52 @@ NzComplexNoiseBase::NzComplexNoiseBase()
m_lacunarity = 5.0f;
m_hurst = 1.2f;
m_octaves = 3.0f;
for (int i(0) ; i < m_octaves; ++i)
{
m_exponent_array[i] = 0;
}
}
float NzComplexNoiseBase::GetLacunarity() const
{
return m_lacunarity;
}
float NzComplexNoiseBase::GetHurstParameter() const
{
return m_hurst;
}
float NzComplexNoiseBase::GetOctaveNumber() const
{
return m_octaves;
}
void NzComplexNoiseBase::SetLacunarity(float lacunarity)
{
if(lacunarity != m_lacunarity)
{
m_lacunarity = lacunarity;
m_parametersModified = true;
}
m_lacunarity = lacunarity;
m_parametersModified = true;
}
void NzComplexNoiseBase::SetHurstParameter(float h)
{
if(h != m_hurst)
{
m_hurst = h;
m_parametersModified = true;
}
m_hurst = h;
m_parametersModified = true;
}
void NzComplexNoiseBase::SetOctavesNumber(float octaves)
{
if(octaves != m_octaves && octaves < 30)
{
if(octaves <= 30.0f)
m_octaves = octaves;
m_parametersModified = true;
}
else
m_octaves = 30.0f;
m_parametersModified = true;
}
void NzComplexNoiseBase::RecomputeExponentArray()
@ -49,12 +68,13 @@ void NzComplexNoiseBase::RecomputeExponentArray()
{
float frequency = 1.0;
m_sum = 0.f;
for (int i(0) ; i < m_octaves; ++i)
for (int i(0) ; i < static_cast<int>(m_octaves) ; ++i)
{
exponent_array[i] = std::pow( frequency, -m_hurst );
m_exponent_array[i] = std::pow( frequency, -m_hurst );
frequency *= m_lacunarity;
m_sum += exponent_array[i];
m_sum += m_exponent_array[i];
}
m_parametersModified = false;

View File

@ -0,0 +1,51 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/FBM2D.hpp>
#include <Nazara/Noise/Perlin2D.hpp>
#include <Nazara/Noise/Simplex2D.hpp>
#include <Nazara/Noise/Debug.hpp>
NzFBM2D::NzFBM2D(nzNoises source, unsigned int seed)
{
switch(source)
{
case PERLIN:
m_source = new NzPerlin2D();
break;
default:
m_source = new NzSimplex2D();
break;
}
m_source->SetNewSeed(seed);
m_source->ShufflePermutationTable();
m_noiseType = source;
}
float NzFBM2D::GetValue(float x, float y, float resolution)
{
this->RecomputeExponentArray();
m_value = 0.0;
for (int i(0); i < m_octaves; ++i)
{
m_value += m_source->GetValue(x,y,resolution) * m_exponent_array[i];
resolution *= m_lacunarity;
}
m_remainder = m_octaves - static_cast<int>(m_octaves);
if(!NzNumberEquals(m_remainder, static_cast<float>(0.0)))
m_value += m_remainder * m_source->GetValue(x,y,resolution) * m_exponent_array[static_cast<int>(m_octaves-1)];
return m_value/this->m_sum;
}
NzFBM2D::~NzFBM2D()
{
delete m_source;
}

View File

@ -0,0 +1,51 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/FBM3D.hpp>
#include <Nazara/Noise/Perlin3D.hpp>
#include <Nazara/Noise/Simplex3D.hpp>
#include <Nazara/Noise/Debug.hpp>
NzFBM3D::NzFBM3D(nzNoises source, unsigned int seed)
{
switch(source)
{
case PERLIN:
m_source = new NzPerlin3D();
break;
default:
m_source = new NzSimplex3D();
break;
}
m_source->SetNewSeed(seed);
m_source->ShufflePermutationTable();
m_noiseType = source;
}
float NzFBM3D::GetValue(float x, float y, float z, float resolution)
{
this->RecomputeExponentArray();
m_value = 0.0;
for (int i(0); i < m_octaves; ++i)
{
m_value += m_source->GetValue(x,y,z,resolution) * m_exponent_array[i];
resolution *= m_lacunarity;
}
m_remainder = m_octaves - static_cast<int>(m_octaves);
if(!NzNumberEquals(m_remainder, static_cast<float>(0.0)))
m_value += m_remainder * m_source->GetValue(x,y,z,resolution) * m_exponent_array[static_cast<int>(m_octaves-1)];
return m_value/this->m_sum;
}
NzFBM3D::~NzFBM3D()
{
delete m_source;
}

View File

@ -0,0 +1,51 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/FBM4D.hpp>
#include <Nazara/Noise/Perlin4D.hpp>
#include <Nazara/Noise/Simplex4D.hpp>
#include <Nazara/Noise/Debug.hpp>
NzFBM4D::NzFBM4D(nzNoises source, unsigned int seed)
{
switch(source)
{
case PERLIN:
m_source = new NzPerlin4D();
break;
default:
m_source = new NzSimplex4D();
break;
}
m_source->SetNewSeed(seed);
m_source->ShufflePermutationTable();
m_noiseType = source;
}
float NzFBM4D::GetValue(float x, float y, float z, float w, float resolution)
{
this->RecomputeExponentArray();
m_value = 0.0;
for (int i(0); i < m_octaves; ++i)
{
m_value += m_source->GetValue(x,y,z,w,resolution) * m_exponent_array[i];
resolution *= m_lacunarity;
}
m_remainder = m_octaves - static_cast<int>(m_octaves);
if(!NzNumberEquals(m_remainder, static_cast<float>(0.0)))
m_value += m_remainder * m_source->GetValue(x,y,z,w,resolution) * m_exponent_array[static_cast<int>(m_octaves-1)];
return m_value/this->m_sum;
}
NzFBM4D::~NzFBM4D()
{
delete m_source;
}

View File

@ -0,0 +1,65 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/HybridMultiFractal3D.hpp>
#include <Nazara/Noise/Perlin3D.hpp>
#include <Nazara/Noise/Simplex3D.hpp>
#include <Nazara/Noise/Debug.hpp>
NzHybridMultiFractal3D::NzHybridMultiFractal3D(nzNoises source, unsigned int seed)
{
switch(source)
{
case PERLIN:
m_source = new NzPerlin3D();
break;
default:
m_source = new NzSimplex3D();
break;
}
m_source->SetNewSeed(seed);
m_source->ShufflePermutationTable();
m_noiseType = source;
}
float NzHybridMultiFractal3D::GetValue(float x, float y, float z, float resolution)
{
this->RecomputeExponentArray();
m_offset = 1.0f;
m_value = (m_source->GetValue(x,y,z,resolution) + m_offset) * m_exponent_array[0];
m_weight = m_value;
m_signal = 0.f;
resolution *= m_lacunarity;
for(int i(1) ; i < m_octaves; ++i)
{
if(m_weight > 1.0)
m_weight = 1.0;
m_signal = (m_source->GetValue(x,y,z,resolution) + m_offset) * m_exponent_array[i];
m_value += m_weight * m_signal;
m_weight *= m_signal;
resolution *= m_lacunarity;
}
m_remainder = m_octaves - static_cast<int>(m_octaves);
if(remainder != 0)
m_value += m_remainder * m_source->GetValue(x,y,z,resolution) * m_exponent_array[static_cast<int>(m_octaves-1)];
return m_value/this->m_sum - m_offset;
}
NzHybridMultiFractal3D::~NzHybridMultiFractal3D()
{
delete m_source;
}

View File

@ -0,0 +1,65 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/HybridMultiFractal4D.hpp>
#include <Nazara/Noise/Perlin4D.hpp>
#include <Nazara/Noise/Simplex4D.hpp>
#include <Nazara/Noise/Debug.hpp>
NzHybridMultiFractal4D::NzHybridMultiFractal4D(nzNoises source, unsigned int seed)
{
switch(source)
{
case PERLIN:
m_source = new NzPerlin4D();
break;
default:
m_source = new NzSimplex4D();
break;
}
m_source->SetNewSeed(seed);
m_source->ShufflePermutationTable();
m_noiseType = source;
}
float NzHybridMultiFractal4D::GetValue(float x, float y, float z, float w, float resolution)
{
this->RecomputeExponentArray();
m_offset = 1.0f;
m_value = (m_source->GetValue(x,y,z,w,resolution) + m_offset) * m_exponent_array[0];
m_weight = m_value;
m_signal = 0.f;
resolution *= m_lacunarity;
for(int i(1) ; i < m_octaves; ++i)
{
if(m_weight > 1.0)
m_weight = 1.0;
m_signal = (m_source->GetValue(x,y,z,w,resolution) + m_offset) * m_exponent_array[i];
m_value += m_weight * m_signal;
m_weight *= m_signal;
resolution *= m_lacunarity;
}
m_remainder = m_octaves - static_cast<int>(m_octaves);
if(remainder != 0)
m_value += m_remainder * m_source->GetValue(x,y,z,w,resolution) * m_exponent_array[static_cast<int>(m_octaves-1)];
return m_value/this->m_sum - m_offset;
}
NzHybridMultiFractal4D::~NzHybridMultiFractal4D()
{
delete m_source;
}

View File

@ -0,0 +1,65 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/HybridMultiFractal2D.hpp>
#include <Nazara/Noise/Perlin2D.hpp>
#include <Nazara/Noise/Simplex2D.hpp>
#include <Nazara/Noise/Debug.hpp>
NzHybridMultiFractal2D::NzHybridMultiFractal2D(nzNoises source, unsigned int seed)
{
switch(source)
{
case PERLIN:
m_source = new NzPerlin2D();
break;
default:
m_source = new NzSimplex2D();
break;
}
m_source->SetNewSeed(seed);
m_source->ShufflePermutationTable();
m_noiseType = source;
}
float NzHybridMultiFractal2D::GetValue(float x, float y, float resolution)
{
this->RecomputeExponentArray();
m_offset = 1.0f;
m_value = (m_source->GetValue(x,y,resolution) + m_offset) * m_exponent_array[0];
m_weight = m_value;
m_signal = 0.f;
resolution *= m_lacunarity;
for(int i(1) ; i < m_octaves; ++i)
{
if(m_weight > 1.0)
m_weight = 1.0;
m_signal = (m_source->GetValue(x,y,resolution) + m_offset) * m_exponent_array[i];
m_value += m_weight * m_signal;
m_weight *= m_signal;
resolution *= m_lacunarity;
}
m_remainder = m_octaves - static_cast<int>(m_octaves);
if(remainder != 0)
m_value += m_remainder * m_source->GetValue(x,y,resolution) * m_exponent_array[static_cast<int>(m_octaves-1)];
return m_value/this->m_sum - m_offset;
}
NzHybridMultiFractal2D::~NzHybridMultiFractal2D()
{
delete m_source;
}

View File

@ -0,0 +1,53 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine".
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <stdexcept>
#include <Nazara/Noise/Debug.hpp>
#include <Nazara/Noise/MappedNoiseBase.hpp>
NzMappedNoiseBase::NzMappedNoiseBase() : m_gain(1.f), m_offset(0.f), m_resolution(30.f)
{
}
float NzMappedNoiseBase::GetGain() const
{
return m_gain;
}
float NzMappedNoiseBase::GetOffset() const
{
return m_offset;
}
float NzMappedNoiseBase::GetResolution() const
{
return m_resolution;
}
void NzMappedNoiseBase::SetGain(float gain)
{
m_gain = gain;
}
void NzMappedNoiseBase::SetOffset(float offset)
{
m_offset = offset;
}
void NzMappedNoiseBase::SetResolution(float resolution)
{
if (NzNumberEquals(resolution, 0.f))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << " : resolution cannot be 0.0f";
throw std::domain_error(ss.ToString());
}
m_resolution = resolution;
}

View File

@ -7,7 +7,7 @@
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Debug.hpp>
NzNoiseBase::NzNoiseBase(int seed)
NzNoiseBase::NzNoiseBase(unsigned int seed)
{
Ua = 16807;
Uc = 0;
@ -17,18 +17,18 @@ NzNoiseBase::NzNoiseBase(int seed)
SetNewSeed(seed);
for(int i(0) ; i < 256 ; i++)
perm[i] = i;
for(int i(0) ; i < 512 ; i++)
perm[i] = i & 255;
}
void NzNoiseBase::SetNewSeed(int seed)
void NzNoiseBase::SetNewSeed(unsigned int seed)
{
Uprevious = seed;
UcurrentSeed = seed;
}
int NzNoiseBase::GetUniformRandomValue()
unsigned int NzNoiseBase::GetUniformRandomValue()
{
Ulast = Ua*Uprevious + Uc%Um;
Uprevious = Ulast;
@ -40,11 +40,11 @@ void NzNoiseBase::ShufflePermutationTable()
int xchanger;
unsigned int ncase;
for(int i(0) ; i < 256 ; i++)
for(unsigned int i(0) ; i < 256 ; i++)
perm[i] = i;
for(int j(0) ; j < 20 ; ++j)
for (int i(0); i < 256 ; ++i)
for(unsigned int j(0) ; j < 20 ; ++j)
for (unsigned int i(0); i < 256 ; ++i)
{
ncase = this->GetUniformRandomValue() & 255;
xchanger = perm[i];
@ -52,7 +52,7 @@ void NzNoiseBase::ShufflePermutationTable()
perm[ncase] = xchanger;
}
for(int i(256) ; i < 512; ++i)
for(unsigned int i(256) ; i < 512; ++i)
perm[i] = perm[i & 255];
}
@ -74,5 +74,3 @@ int NzNoiseBase::JenkinsHash(int a, int b, int c)
c = c-a; c = c - b; c = c^(static_cast<unsigned int>(b) >> 15);
return c;
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -1,762 +0,0 @@
// Copyright (C) 2012 Rémi Bèges
// This file is part of the "Nazara Engine - Noise module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Noise/NoiseMachine.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Debug.hpp>
NzNoiseMachine::NzNoiseMachine(int seed)
{
SkewCoeff2D = 0.5*(sqrt(3.0) - 1.0);
UnskewCoeff2D = (3.0-sqrt(3.0))/6;
SkewCoeff3D = 1/3;
UnskewCoeff3D = 1/6;
SkewCoeff4D = (sqrt(5) - 1)/4;
UnskewCoeff4D = (5 - sqrt(5))/20;
int lookupTemp4D[][4] =
{
{0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
{2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
{2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}
};
for(int i(0) ; i < 64 ; ++i)
for(int j(0) ; j < 4 ; ++j)
lookupTable4D[i][j] = lookupTemp4D[i][j];
float grad2Temp[][2] = {{1,1},{-1,1},{1,-1},{-1,-1},
{1,0},{-1,0},{0,1},{0,-1}};
for(int i(0) ; i < 8 ; ++i)
for(int j(0) ; j < 2 ; ++j)
gradient2[i][j] = grad2Temp[i][j];
int grad3Temp[][3] = {
{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
{1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1},
{1,1,0},{-1,1,0},{0,-1,1},{0,-1,-1}
};
for(int i(0) ; i < 16 ; ++i)
for(int j(0) ; j < 3 ; ++j)
gradient3[i][j] = grad3Temp[i][j];
int grad4Temp[][4] =
{
{0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1},
{0,-1,1,1},{0,-1,1,-1},{0,-1,-1,1},{0,-1,-1,-1},
{1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1},
{-1,0,1,1},{-1,0,1,-1},{-1,0,-1,1},{-1,0,-1,-1},
{1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1},
{-1,1,0,1},{-1,1,0,-1},{-1,-1,0,1},{-1,-1,0,-1},
{1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0},
{-1,1,1,0},{-1,1,-1,0},{-1,-1,1,0},{-1,-1,-1,0}
};
for(int i(0) ; i < 32 ; ++i)
for(int j(0) ; j < 4 ; ++j)
gradient4[i][j] = grad4Temp[i][j];
}
//------------------------------ PERLIN ------------------------------
float NzNoiseMachine::Get2DPerlinNoiseValue(float x, float y, float res)
{
x /= res;
y /= res;
x0 = fastfloor(x);
y0 = fastfloor(y);
ii = x0 & 255;
jj = y0 & 255;
gi0 = perm[ii + perm[jj]] & 7;
gi1 = perm[ii + 1 + perm[jj]] & 7;
gi2 = perm[ii + perm[jj + 1]] & 7;
gi3 = perm[ii + 1 + perm[jj + 1]] & 7;
temp.x = x-x0;
temp.y = y-y0;
Cx = temp.x * temp.x * temp.x * (temp.x * (temp.x * 6 - 15) + 10);
Cy = temp.y * temp.y * temp.y * (temp.y * (temp.y * 6 - 15) + 10);
s[0] = gradient2[gi0][0]*temp.x + gradient2[gi0][1]*temp.y;
temp.x = x-(x0+1);
t[0] = gradient2[gi1][0]*temp.x + gradient2[gi1][1]*temp.y;
temp.y = y-(y0+1);
v[0] = gradient2[gi3][0]*temp.x + gradient2[gi3][1]*temp.y;
temp.x = x-x0;
u[0] = gradient2[gi2][0]*temp.x + gradient2[gi2][1]*temp.y;
Li1 = s[0] + Cx*(t[0]-s[0]);
Li2 = u[0] + Cx*(v[0]-u[0]);
return Li1 + Cy*(Li2-Li1);
}
float NzNoiseMachine::Get3DPerlinNoiseValue(float x, float y, float z, float res)
{
x /= res;
y /= res;
z /= res;
x0 = fastfloor(x);
y0 = fastfloor(y);
z0 = fastfloor(z);
ii = x0 & 255;
jj = y0 & 255;
kk = z0 & 255;
gi0 = perm[ii + perm[jj + perm[kk ]]] & 15;
gi1 = perm[ii + 1 + perm[jj + perm[kk ]]] & 15;
gi2 = perm[ii + perm[jj + 1 + perm[kk ]]] & 15;
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk ]]] & 15;
gi4 = perm[ii + perm[jj + perm[kk + 1]]] & 15;
gi5 = perm[ii + 1 + perm[jj + perm[kk + 1]]] & 15;
gi6 = perm[ii + perm[jj + 1 + perm[kk + 1]]] & 15;
gi7 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] & 15;
temp.x = x-x0;
temp.y = y-y0;
temp.z = z-z0;
Cx = temp.x * temp.x * temp.x * (temp.x * (temp.x * 6 - 15) + 10);
Cy = temp.y * temp.y * temp.y * (temp.y * (temp.y * 6 - 15) + 10);
Cz = temp.z * temp.z * temp.z * (temp.z * (temp.z * 6 - 15) + 10);
s[0] = gradient3[gi0][0]*temp.x + gradient3[gi0][1]*temp.y + gradient3[gi0][2]*temp.z;
temp.x = x-(x0+1);
t[0] = gradient3[gi1][0]*temp.x + gradient3[gi1][1]*temp.y + gradient3[gi1][2]*temp.z;
temp.y = y-(y0+1);
v[0] = gradient3[gi3][0]*temp.x + gradient3[gi3][1]*temp.y + gradient3[gi3][2]*temp.z;
temp.x = x-x0;
u[0] = gradient3[gi2][0]*temp.x + gradient3[gi2][1]*temp.y + gradient3[gi2][2]*temp.z;
temp.y = y-y0;
temp.z = z-(z0+1);
s[1] = gradient3[gi4][0]*temp.x + gradient3[gi4][1]*temp.y + gradient3[gi4][2]*temp.z;
temp.x = x-(x0+1);
t[1] = gradient3[gi5][0]*temp.x + gradient3[gi5][1]*temp.y + gradient3[gi5][2]*temp.z;
temp.y = y-(y0+1);
v[1] = gradient3[gi7][0]*temp.x + gradient3[gi7][1]*temp.y + gradient3[gi7][2]*temp.z;
temp.x = x-x0;
u[1] = gradient3[gi6][0]*temp.x + gradient3[gi6][1]*temp.y + gradient3[gi6][2]*temp.z;
Li1 = s[0] + Cx*(t[0]-s[0]);
Li2 = u[0] + Cx*(v[0]-u[0]);
Li3 = s[1] + Cx*(t[1]-s[1]);
Li4 = u[1] + Cx*(v[1]-u[1]);
Li5 = Li1 + Cy*(Li2-Li1);
Li6 = Li3 + Cy*(Li4-Li3);
return Li5 + Cz*(Li6-Li5);
}
float NzNoiseMachine::Get4DPerlinNoiseValue(float x, float y, float z, float w, float res)
{
x /= res;
y /= res;
z /= res;
w /= res;
x0 = fastfloor(x);
y0 = fastfloor(y);
z0 = fastfloor(z);
w0 = fastfloor(w);
ii = x0 & 255;
jj = y0 & 255;
kk = z0 & 255;
ll = w0 & 255;
gi0 = perm[ii + perm[jj + perm[kk + perm[ll ]]]] & 31;
gi1 = perm[ii + 1 + perm[jj + perm[kk + perm[ll ]]]] & 31;
gi2 = perm[ii + perm[jj + 1 + perm[kk + perm[ll ]]]] & 31;
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + perm[ll ]]]] & 31;
gi4 = perm[ii + perm[jj + + perm[kk + 1 + perm[ll ]]]] & 31;
gi5 = perm[ii + 1 + perm[jj + + perm[kk + 1 + perm[ll ]]]] & 31;
gi6 = perm[ii + perm[jj + 1 + perm[kk + 1 + perm[ll ]]]] & 31;
gi7 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll ]]]] & 31;
gi8 = perm[ii + perm[jj + perm[kk + perm[ll + 1]]]] & 31;
gi9 = perm[ii + 1 + perm[jj + perm[kk + perm[ll + 1]]]] & 31;
gi10 = perm[ii + perm[jj + 1 + perm[kk + perm[ll + 1]]]] & 31;
gi11 = perm[ii + 1 + perm[jj + 1 + perm[kk + perm[ll + 1]]]] & 31;
gi12 = perm[ii + perm[jj + perm[kk + 1 + perm[ll + 1]]]] & 31;
gi13 = perm[ii + 1 + perm[jj + perm[kk + 1 + perm[ll + 1]]]] & 31;
gi14 = perm[ii + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] & 31;
gi15 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] & 31;
temp.x = x-x0;
temp.y = y-y0;
temp.z = z-z0;
temp.w = w-w0;
Cx = temp.x * temp.x * temp.x * (temp.x * (temp.x * 6 - 15) + 10);
Cy = temp.y * temp.y * temp.y * (temp.y * (temp.y * 6 - 15) + 10);
Cz = temp.z * temp.z * temp.z * (temp.z * (temp.z * 6 - 15) + 10);
Cw = temp.w * temp.w * temp.w * (temp.w * (temp.w * 6 - 15) + 10);
s[0] = gradient4[gi0][0]*temp.x + gradient4[gi0][1]*temp.y + gradient4[gi0][2]*temp.z + gradient4[gi0][3]*temp.w;
temp.x = x-(x0+1);
t[0] = gradient4[gi1][0]*temp.x + gradient4[gi1][1]*temp.y + gradient4[gi1][2]*temp.z + gradient4[gi1][3]*temp.w;
temp.y = y-(y0+1);
v[0] = gradient4[gi3][0]*temp.x + gradient4[gi3][1]*temp.y + gradient4[gi3][2]*temp.z + gradient4[gi3][3]*temp.w;
temp.x = x-x0;
u[0] = gradient4[gi2][0]*temp.x + gradient4[gi2][1]*temp.y + gradient4[gi2][2]*temp.z + gradient4[gi2][3]*temp.w;
temp.y = y-y0;
temp.z = z-(z0+1);
s[1] = gradient4[gi4][0]*temp.x + gradient4[gi4][1]*temp.y + gradient4[gi4][2]*temp.z + gradient4[gi4][3]*temp.w;
temp.x = x-(x0+1);
t[1] = gradient4[gi5][0]*temp.x + gradient4[gi5][1]*temp.y + gradient4[gi5][2]*temp.z + gradient4[gi5][3]*temp.w;
temp.y = y-(y0+1);
v[1] = gradient4[gi7][0]*temp.x + gradient4[gi7][1]*temp.y + gradient4[gi7][2]*temp.z + gradient4[gi7][3]*temp.w;
temp.x = x-x0;
u[1] = gradient4[gi6][0]*temp.x + gradient4[gi6][1]*temp.y + gradient4[gi6][2]*temp.z + gradient4[gi6][3]*temp.w;
temp.y = y-y0;
temp.z = z-z0;
temp.w = w-(w0+1);
s[2] = gradient4[gi8][0]*temp.x + gradient4[gi8][1]*temp.y + gradient4[gi8][2]*temp.z + gradient4[gi8][3]*temp.w;
temp.x = x-(x0+1);
t[2] = gradient4[gi9][0]*temp.x + gradient4[gi9][1]*temp.y + gradient4[gi9][2]*temp.z + gradient4[gi9][3]*temp.w;
temp.y = y-(y0+1);
v[2] = gradient4[gi11][0]*temp.x + gradient4[gi11][1]*temp.y + gradient4[gi11][2]*temp.z + gradient4[gi11][3]*temp.w;
temp.x = x-x0;
u[2] = gradient4[gi10][0]*temp.x + gradient4[gi10][1]*temp.y + gradient4[gi10][2]*temp.z + gradient4[gi10][3]*temp.w;
temp.y = y-y0;
temp.z = z-(z0+1);
s[3] = gradient4[gi12][0]*temp.x + gradient4[gi12][1]*temp.y + gradient4[gi12][2]*temp.z + gradient4[gi12][3]*temp.w;
temp.x = x-(x0+1);
t[3] = gradient4[gi13][0]*temp.x + gradient4[gi13][1]*temp.y + gradient4[gi13][2]*temp.z + gradient4[gi13][3]*temp.w;
temp.y = y-(y0+1);
v[3] = gradient4[gi15][0]*temp.x + gradient4[gi15][1]*temp.y + gradient4[gi15][2]*temp.z + gradient4[gi15][3]*temp.w;
temp.x = x-x0;
u[3] = gradient4[gi14][0]*temp.x + gradient4[gi14][1]*temp.y + gradient4[gi14][2]*temp.z + gradient4[gi14][3]*temp.w;
Li1 = s[0] + Cx*(t[0]-s[0]);
Li2 = u[0] + Cx*(v[0]-u[0]);
Li3 = s[1] + Cx*(t[1]-s[1]);
Li4 = u[1] + Cx*(v[1]-u[1]);
Li5 = s[2] + Cx*(t[2]-s[2]);
Li6 = u[2] + Cx*(v[2]-u[2]);
Li7 = s[3] + Cx*(t[3]-s[3]);
Li8 = u[3] + Cx*(v[3]-u[3]);
Li9 = Li1 + Cy*(Li2-Li1);
Li10 = Li3 + Cy*(Li4-Li3);
Li11 = Li5 + Cy*(Li6-Li5);
Li12 = Li7 + Cy*(Li8-Li7);
Li13 = Li9 + Cz*(Li10-Li9);
Li14 = Li11 + Cz*(Li12-Li11);
return Li13 + Cw*(Li14-Li13);
}
//------------------------------ SIMPLEX ------------------------------
float NzNoiseMachine::Get2DSimplexNoiseValue(float x, float y, float res)
{
x /= res;
y /= res;
sum = (x + y) * SkewCoeff2D;
skewedCubeOrigin.x = fastfloor(x + sum);
skewedCubeOrigin.y = fastfloor(y + sum);
sum = (skewedCubeOrigin.x + skewedCubeOrigin.y) * UnskewCoeff2D;
unskewedCubeOrigin.x = skewedCubeOrigin.x - sum;
unskewedCubeOrigin.y = skewedCubeOrigin.y - sum;
unskewedDistToOrigin.x = x - unskewedCubeOrigin.x;
unskewedDistToOrigin.y = y - unskewedCubeOrigin.y;
if(unskewedDistToOrigin.x > unskewedDistToOrigin.y)
{
off1.x = 1;
off1.y = 0;
}
else
{
off1.x = 0;
off1.y = 1;
}
d1 = - unskewedDistToOrigin;
d2.x = d1.x + off1.x - UnskewCoeff2D;
d2.y = d1.y + off1.y - UnskewCoeff2D;
d3.x = d1.x + 1.0 - 2 * UnskewCoeff2D;
d3.y = d1.y + 1.0 - 2 * UnskewCoeff2D;
ii = skewedCubeOrigin.x & 255;
jj = skewedCubeOrigin.y & 255;
gi0 = perm[ii + perm[jj ]] & 7;
gi1 = perm[ii + off1.x + perm[jj + off1.y]] & 7;
gi2 = perm[ii + 1 + perm[jj + 1 ]] & 7;
c1 = 0.5 - d1.x * d1.x - d1.y * d1.y;
c2 = 0.5 - d2.x * d2.x - d2.y * d2.y;
c3 = 0.5 - d3.x * d3.x - d3.y * d3.y;
if(c1 < 0)
n1 = 0;
else
n1 = c1*c1*c1*c1*(gradient2[gi0][0] * d1.x + gradient2[gi0][1] * d1.y);
if(c2 < 0)
n2 = 0;
else
n2 = c2*c2*c2*c2*(gradient2[gi1][0] * d2.x + gradient2[gi1][1] * d2.y);
if(c3 < 0)
n3 = 0;
else
n3 = c3*c3*c3*c3*(gradient2[gi2][0] * d3.x + gradient2[gi2][1] * d3.y);
return (n1+n2+n3)*70;
}
float NzNoiseMachine::Get3DSimplexNoiseValue(float x, float y, float z, float res)
{
x /= res;
y /= res;
z /= res;
sum = (x + y + z) * SkewCoeff3D;
skewedCubeOrigin.x = fastfloor(x + sum);
skewedCubeOrigin.y = fastfloor(y + sum);
skewedCubeOrigin.z = fastfloor(z + sum);
sum = (skewedCubeOrigin.x + skewedCubeOrigin.y + skewedCubeOrigin.z) * UnskewCoeff3D;
unskewedCubeOrigin.x = skewedCubeOrigin.x - sum;
unskewedCubeOrigin.y = skewedCubeOrigin.y - sum;
unskewedCubeOrigin.z = skewedCubeOrigin.z - sum;
unskewedDistToOrigin.x = x - unskewedCubeOrigin.x;
unskewedDistToOrigin.y = y - unskewedCubeOrigin.y;
unskewedDistToOrigin.z = z - unskewedCubeOrigin.z;
if(unskewedDistToOrigin.x >= unskewedDistToOrigin.y)
{
if(unskewedDistToOrigin.y >= unskewedDistToOrigin.z)
{
off1.x = 1;
off1.y = 0;
off1.z = 0;
off2.x = 1;
off2.y = 1;
off2.z = 0;
}
else if(unskewedDistToOrigin.x >= unskewedDistToOrigin.z)
{
off1.x = 1;
off1.y = 0;
off1.z = 0;
off2.x = 1;
off2.y = 0;
off2.z = 1;
}
else
{
off1.x = 0;
off1.y = 0;
off1.z = 1;
off2.x = 1;
off2.y = 0;
off2.z = 1;
}
}
else
{
if(unskewedDistToOrigin.y < unskewedDistToOrigin.z)
{
off1.x = 0;
off1.y = 0;
off1.z = 1;
off2.x = 0;
off2.y = 1;
off2.z = 1;
}
else if(unskewedDistToOrigin.x < unskewedDistToOrigin.z)
{
off1.x = 0;
off1.y = 1;
off1.z = 0;
off2.x = 0;
off2.y = 1;
off2.z = 1;
}
else
{
off1.x = 0;
off1.y = 1;
off1.z = 0;
off2.x = 1;
off2.y = 1;
off2.z = 0;
}
}
d1 = unskewedDistToOrigin;
d2.x = d1.x - off1.x + UnskewCoeff3D;
d2.y = d1.y - off1.y + UnskewCoeff3D;
d2.z = d1.z - off1.z + UnskewCoeff3D;
d3.x = d1.x - off2.x + 2*UnskewCoeff3D;
d3.y = d1.y - off2.y + 2*UnskewCoeff3D;
d3.z = d1.z - off2.z + 2*UnskewCoeff3D;
d4.x = d1.x - 1.0 + 3*UnskewCoeff3D;
d4.y = d1.y - 1.0 + 3*UnskewCoeff3D;
d4.z = d1.z - 1.0 + 3*UnskewCoeff3D;
ii = skewedCubeOrigin.x & 255;
jj = skewedCubeOrigin.y & 255;
kk = skewedCubeOrigin.z & 255;
gi0 = perm[ii + perm[jj + perm[kk ]]] % 12;
gi1 = perm[ii + off1.x + perm[jj + off1.y + perm[kk + off1.z]]] % 12;
gi2 = perm[ii + off2.x + perm[jj + off2.y + perm[kk + off2.z]]] % 12;
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 ]]] % 12;
c1 = 0.6 - d1.x * d1.x - d1.y * d1.y - d1.z * d1.z;
c2 = 0.6 - d2.x * d2.x - d2.y * d2.y - d2.z * d2.z;
c3 = 0.6 - d3.x * d3.x - d3.y * d3.y - d3.z * d3.z;
c4 = 0.6 - d4.x * d4.x - d4.y * d4.y - d4.z * d4.z;
if(c1 < 0)
n1 = 0;
else
n1 = c1*c1*c1*c1*(gradient3[gi0][0] * d1.x + gradient3[gi0][1] * d1.y + gradient3[gi0][2] * d1.z);
if(c2 < 0)
n2 = 0;
else
n2 = c2*c2*c2*c2*(gradient3[gi1][0] * d2.x + gradient3[gi1][1] * d2.y + gradient3[gi1][2] * d2.z);
if(c3 < 0)
n3 = 0;
else
n3 = c3*c3*c3*c3*(gradient3[gi2][0] * d3.x + gradient3[gi2][1] * d3.y + gradient3[gi2][2] * d3.z);
if(c4 < 0)
n4 = 0;
else
n4 = c4*c4*c4*c4*(gradient3[gi3][0] * d4.x + gradient3[gi3][1] * d4.y + gradient3[gi3][2] * d4.z);
return (n1+n2+n3+n4)*32;
}
float NzNoiseMachine::Get4DSimplexNoiseValue(float x, float y, float z, float w, float res)
{
x /= res;
y /= res;
z /= res;
w /= res;
sum = (x + y + z + w) * SkewCoeff4D;
skewedCubeOrigin.x = fastfloor(x + sum);
skewedCubeOrigin.y = fastfloor(y + sum);
skewedCubeOrigin.z = fastfloor(z + sum);
skewedCubeOrigin.w = fastfloor(w + sum);
sum = (skewedCubeOrigin.x + skewedCubeOrigin.y + skewedCubeOrigin.z + skewedCubeOrigin.w) * UnskewCoeff4D;
unskewedCubeOrigin.x = skewedCubeOrigin.x - sum;
unskewedCubeOrigin.y = skewedCubeOrigin.y - sum;
unskewedCubeOrigin.z = skewedCubeOrigin.z - sum;
unskewedCubeOrigin.w = skewedCubeOrigin.w - sum;
unskewedDistToOrigin.x = x - unskewedCubeOrigin.x;
unskewedDistToOrigin.y = y - unskewedCubeOrigin.y;
unskewedDistToOrigin.z = z - unskewedCubeOrigin.z;
unskewedDistToOrigin.w = w - unskewedCubeOrigin.w;
c1 = (unskewedDistToOrigin.x > unskewedDistToOrigin.y) ? 32 : 0;
c2 = (unskewedDistToOrigin.x > unskewedDistToOrigin.z) ? 16 : 0;
c3 = (unskewedDistToOrigin.y > unskewedDistToOrigin.z) ? 8 : 0;
c4 = (unskewedDistToOrigin.x > unskewedDistToOrigin.w) ? 4 : 0;
c5 = (unskewedDistToOrigin.y > unskewedDistToOrigin.w) ? 2 : 0;
c6 = (unskewedDistToOrigin.z > unskewedDistToOrigin.w) ? 1 : 0;
c = c1 + c2 + c3 + c4 + c5 + c6;
off1.x = lookupTable4D[c][0] >= 3 ? 1 : 0;
off1.y = lookupTable4D[c][1] >= 3 ? 1 : 0;
off1.z = lookupTable4D[c][2] >= 3 ? 1 : 0;
off1.w = lookupTable4D[c][3] >= 3 ? 1 : 0;
off2.x = lookupTable4D[c][0] >= 2 ? 1 : 0;
off2.y = lookupTable4D[c][1] >= 2 ? 1 : 0;
off2.z = lookupTable4D[c][2] >= 2 ? 1 : 0;
off2.w = lookupTable4D[c][3] >= 2 ? 1 : 0;
off3.x = lookupTable4D[c][0] >= 1 ? 1 : 0;
off3.y = lookupTable4D[c][1] >= 1 ? 1 : 0;
off3.z = lookupTable4D[c][2] >= 1 ? 1 : 0;
off3.w = lookupTable4D[c][3] >= 1 ? 1 : 0;
d1 = unskewedDistToOrigin;
d2.x = d1.x - off1.x + UnskewCoeff4D;
d2.y = d1.y - off1.y + UnskewCoeff4D;
d2.z = d1.z - off1.z + UnskewCoeff4D;
d2.w = d1.w - off1.w + UnskewCoeff4D;
d3.x = d1.x - off2.x + 2*UnskewCoeff4D;
d3.y = d1.y - off2.y + 2*UnskewCoeff4D;
d3.z = d1.z - off2.z + 2*UnskewCoeff4D;
d3.w = d1.w - off2.w + 2*UnskewCoeff4D;
d4.x = d1.x - off3.x + 3*UnskewCoeff4D;
d4.y = d1.y - off3.y + 3*UnskewCoeff4D;
d4.z = d1.z - off3.z + 3*UnskewCoeff4D;
d4.w = d1.w - off3.w + 3*UnskewCoeff4D;
d5.x = d1.x - 1.0 + 4*UnskewCoeff4D;
d5.y = d1.y - 1.0 + 4*UnskewCoeff4D;
d5.z = d1.z - 1.0 + 4*UnskewCoeff4D;
d5.w = d1.w - 1.0 + 4*UnskewCoeff4D;
ii = skewedCubeOrigin.x & 255;
jj = skewedCubeOrigin.y & 255;
kk = skewedCubeOrigin.z & 255;
ll = skewedCubeOrigin.w & 255;
gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] & 31;
gi1 = perm[ii + off1.x + perm[jj + off1.y + perm[kk + off1.z + perm[ll + off1.w]]]] & 31;
gi2 = perm[ii + off2.x + perm[jj + off2.y + perm[kk + off2.z + perm[ll + off2.w]]]] & 31;
gi3 = perm[ii + off3.x + perm[jj + off3.y + perm[kk + off3.z + perm[ll + off3.w]]]] & 31;
gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
c1 = 0.6 - d1.x*d1.x - d1.y*d1.y - d1.z*d1.z - d1.w*d1.w;
c2 = 0.6 - d2.x*d2.x - d2.y*d2.y - d2.z*d2.z - d2.w*d2.w;
c3 = 0.6 - d3.x*d3.x - d3.y*d3.y - d3.z*d3.z - d3.w*d3.w;
c4 = 0.6 - d4.x*d4.x - d4.y*d4.y - d4.z*d4.z - d4.w*d4.w;
c5 = 0.6 - d5.x*d5.x - d5.y*d5.y - d5.z*d5.z - d5.w*d5.w;
if(c1 < 0)
n1 = 0;
else
n1 = c1*c1*c1*c1*(gradient4[gi0][0]*d1.x + gradient4[gi0][1]*d1.y + gradient4[gi0][2]*d1.z + gradient4[gi0][3]*d1.w);
if(c2 < 0)
n2 = 0;
else
n2 = c2*c2*c2*c2*(gradient4[gi1][0]*d2.x + gradient4[gi1][1]*d2.y + gradient4[gi1][2]*d2.z + gradient4[gi1][3]*d2.w);
if(c3 < 0)
n3 = 0;
else
n3 = c3*c3*c3*c3*(gradient4[gi2][0]*d3.x + gradient4[gi2][1]*d3.y + gradient4[gi2][2]*d3.z + gradient4[gi2][3]*d3.w);
if(c4 < 0)
n4 = 0;
else
n4 = c4*c4*c4*c4*(gradient4[gi3][0]*d4.x + gradient4[gi3][1]*d4.y + gradient4[gi3][2]*d4.z + gradient4[gi3][3]*d4.w);
if(c5 < 0)
n5 = 0;
else
n5 = c5*c5*c5*c5*(gradient4[gi4][0]*d5.x + gradient4[gi4][1]*d5.y + gradient4[gi4][2]*d5.z + gradient4[gi4][3]*d5.w);
return (n1+n2+n3+n4+n5)*27.0;
}
//------------------------------ CELL ------------------------------
float NzNoiseMachine::Get2DCellNoiseValue(float x, float y, float res)
{
return 0;
}
float NzNoiseMachine::Get3DCellNoiseValue(float x, float y, float z, float res)
{
x /= res;
y /= res;
z /= res;
x0 = static_cast<int>(x);
y0 = static_cast<int>(y);
z0 = static_cast<int>(z);
return (this->JenkinsHash(x0,y0,z0) & 255);
}
float NzNoiseMachine::Get4DCellNoiseValue(float x, float y, float z, float w, float res)
{
x /= res;
y /= res;
z /= res;
w /= res;
x0 = static_cast<int>(x) & 255;
y0 = static_cast<int>(y) & 255;
z0 = static_cast<int>(z) & 255;
w0 = static_cast<int>(w) & 255;
return 0;
}
//------------------------------ FBM ------------------------------
float NzNoiseMachine::Get2DFBMNoiseValue(float x, float y, float res)
{
value = 0.0;
RecomputeExponentArray();
for (int i(0); i < m_octaves; ++i)
{
value += Get2DPerlinNoiseValue(x,y,res) * exponent_array[i];
x *= m_lacunarity;
y *= m_lacunarity;
}
remainder = m_octaves - (int)m_octaves;
if(remainder != 0)
value += remainder * Get2DSimplexNoiseValue(x,y,res) * exponent_array[(int)m_octaves-1];
return value * m_sum;
}
float NzNoiseMachine::Get3DFBMNoiseValue(float x, float y, float z, float res)
{
value = 0.0;
RecomputeExponentArray();
for(int i(0); i < m_octaves; ++i)
{
value += Get3DSimplexNoiseValue(x,y,z,res) * exponent_array[i];
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
}
remainder = m_octaves - (int)m_octaves;
if(remainder != 0)
value += remainder * Get3DSimplexNoiseValue(x,y,z,res) * exponent_array[(int)m_octaves-1];
return value * m_sum;
}
//------------------------------ HYBRID MULTIFRACTAL ------------------------------
float NzNoiseMachine::Get2DHybridMultiFractalNoiseValue(float x, float y, float res)
{
float result, signal, weight, remainder;
float offset = 1;
RecomputeExponentArray();
result = (Get2DSimplexNoiseValue(x,y,res) + offset) * exponent_array[0];
weight = result;
x *= m_lacunarity;
y *= m_lacunarity;
for(int i(1) ; i < m_octaves; ++i)
{
if(weight > 1.0)
weight = 1.0;
signal = (Get2DSimplexNoiseValue(x,y,res) + offset) * exponent_array[i];
result += weight * signal;
weight *= signal;
x *= m_lacunarity;
y *= m_lacunarity;
}
remainder = m_octaves - (int)m_octaves;
if(remainder != 0)
result += remainder * Get2DSimplexNoiseValue(x,y,res) * exponent_array[(int)m_octaves-1];
return result;
}
float NzNoiseMachine::Get3DHybridMultiFractalNoiseValue(float x, float y, float z, float res)
{
float result, signal, weight, remainder;
float offset = 1;
RecomputeExponentArray();
result = (Get3DSimplexNoiseValue(x,y,z,res) + offset) * exponent_array[0];
weight = result;
x *= m_lacunarity;
y *= m_lacunarity;
for(int i(1) ; i < m_octaves; ++i)
{
if(weight > 1.0)
weight = 1.0;
signal = ( Get3DSimplexNoiseValue(x,y,z,res) + offset ) * exponent_array[i];
result += weight * signal;
weight *= signal;
x *= m_lacunarity;
y *= m_lacunarity;
}
remainder = m_octaves - (int)m_octaves;
if(remainder != 0)
result += remainder * Get3DSimplexNoiseValue(x,y,z,res) * exponent_array[(int)m_octaves-1];
return result;
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -4,12 +4,12 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Perlin2D.hpp>
#include <Nazara/Noise/Debug.hpp>
template <typename T>
NzPerlin2D<T>::NzPerlin2D()
NzPerlin2D::NzPerlin2D()
{
T grad2Temp[][2] = {{1,1},{-1,1},{1,-1},{-1,-1},
int grad2Temp[][2] = {{1,1},{-1,1},{1,-1},{-1,-1},
{1,0},{-1,0},{0,1},{0,-1}};
for(int i(0) ; i < 8 ; ++i)
@ -17,11 +17,16 @@ NzPerlin2D<T>::NzPerlin2D()
gradient2[i][j] = grad2Temp[i][j];
}
template <typename T>
T NzPerlin2D<T>::GetValue(T x, T y, T res)
NzPerlin2D::NzPerlin2D(unsigned int seed) : NzPerlin2D()
{
x /= res;
y /= res;
this->SetNewSeed(seed);
this->ShufflePermutationTable();
}
float NzPerlin2D::GetValue(float x, float y, float resolution)
{
x *= resolution;
y *= resolution;
x0 = fastfloor(x);
y0 = fastfloor(y);
@ -29,9 +34,9 @@ T NzPerlin2D<T>::GetValue(T x, T y, T res)
ii = x0 & 255;
jj = y0 & 255;
gi0 = perm[ii + perm[jj]] & 7;
gi0 = perm[ii + perm[jj]] & 7;
gi1 = perm[ii + 1 + perm[jj]] & 7;
gi2 = perm[ii + perm[jj + 1]] & 7;
gi2 = perm[ii + perm[jj + 1]] & 7;
gi3 = perm[ii + 1 + perm[jj + 1]] & 7;
temp.x = x-x0;
@ -56,5 +61,3 @@ T NzPerlin2D<T>::GetValue(T x, T y, T res)
return Li1 + Cy*(Li2-Li1);
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -4,12 +4,12 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Perlin3D.hpp>
#include <Nazara/Noise/Debug.hpp>
template <typename T>
NzPerlin3D<T>::NzPerlin3D()
NzPerlin3D::NzPerlin3D()
{
int grad3Temp[][3] = {
float grad3Temp[][3] = {
{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
{1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1},
@ -21,12 +21,17 @@ NzPerlin3D<T>::NzPerlin3D()
gradient3[i][j] = grad3Temp[i][j];
}
template <typename T>
T NzPerlin3D<T>::GetValue(T x, T y, T z, T res)
NzPerlin3D::NzPerlin3D(unsigned int seed) : NzPerlin3D()
{
x /= res;
y /= res;
z /= res;
this->SetNewSeed(seed);
this->ShufflePermutationTable();
}
float NzPerlin3D::GetValue(float x, float y, float z, float resolution)
{
x /= resolution;
y /= resolution;
z /= resolution;
x0 = fastfloor(x);
y0 = fastfloor(y);
@ -36,14 +41,14 @@ T NzPerlin3D<T>::GetValue(T x, T y, T z, T res)
jj = y0 & 255;
kk = z0 & 255;
gi0 = perm[ii + perm[jj + perm[kk]]] & 15;
gi1 = perm[ii + 1 + perm[jj + perm[kk]]] & 15;
gi2 = perm[ii + perm[jj + 1 + perm[kk]]] & 15;
gi0 = perm[ii + perm[jj + perm[kk]]] & 15;
gi1 = perm[ii + 1 + perm[jj + perm[kk]]] & 15;
gi2 = perm[ii + perm[jj + 1 + perm[kk]]] & 15;
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk]]] & 15;
gi4 = perm[ii + perm[jj + perm[kk + 1]]] & 15;
gi5 = perm[ii + 1 + perm[jj + perm[kk + 1]]] & 15;
gi6 = perm[ii + perm[jj + 1 + perm[kk + 1]]] & 15;
gi4 = perm[ii + perm[jj + perm[kk + 1]]] & 15;
gi5 = perm[ii + 1 + perm[jj + perm[kk + 1]]] & 15;
gi6 = perm[ii + perm[jj + 1 + perm[kk + 1]]] & 15;
gi7 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] & 15;
temp.x = x-x0;
@ -88,5 +93,3 @@ T NzPerlin3D<T>::GetValue(T x, T y, T z, T res)
return Li5 + Cz*(Li6-Li5);
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -4,12 +4,12 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Perlin4D.hpp>
#include <Nazara/Noise/Debug.hpp>
template <typename T>
NzPerlin4D<T>::NzPerlin4D()
NzPerlin4D::NzPerlin4D()
{
int grad4Temp[][4] =
float grad4Temp[][4] =
{
{0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1},
{0,-1,1,1},{0,-1,1,-1},{0,-1,-1,1},{0,-1,-1,-1},
@ -26,33 +26,38 @@ NzPerlin4D<T>::NzPerlin4D()
gradient4[i][j] = grad4Temp[i][j];
}
template <typename T>
T NzPerlin4D<T>::GetValue(T x, T y, T z, T w, T res)
NzPerlin4D::NzPerlin4D(unsigned int seed) : NzPerlin4D()
{
nx = x/res;
ny = y/res;
nz = z/res;
nw = w/res;
this->SetNewSeed(seed);
this->ShufflePermutationTable();
}
x0 = fastfloor(nx);
y0 = fastfloor(ny);
z0 = fastfloor(nz);
w0 = fastfloor(nw);
float NzPerlin4D::GetValue(float x, float y, float z, float w, float resolution)
{
x *= resolution;
y *= resolution;
z *= resolution;
w *= resolution;
x0 = fastfloor(x);
y0 = fastfloor(y);
z0 = fastfloor(z);
w0 = fastfloor(w);
ii = x0 & 255;
jj = y0 & 255;
kk = z0 & 255;
ll = w0 & 255;
gi0 = perm[ii + perm[jj + perm[kk + perm[ll ]]]] & 31;
gi1 = perm[ii + 1 + perm[jj + perm[kk + perm[ll ]]]] & 31;
gi2 = perm[ii + perm[jj + 1 + perm[kk + perm[ll ]]]] & 31;
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + perm[ll ]]]] & 31;
gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] & 31;
gi1 = perm[ii + 1 + perm[jj + perm[kk + perm[ll]]]] & 31;
gi2 = perm[ii + perm[jj + 1 + perm[kk + perm[ll]]]] & 31;
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + perm[ll]]]] & 31;
gi4 = perm[ii + perm[jj + + perm[kk + 1 + perm[ll ]]]] & 31;
gi5 = perm[ii + 1 + perm[jj + + perm[kk + 1 + perm[ll ]]]] & 31;
gi6 = perm[ii + perm[jj + 1 + perm[kk + 1 + perm[ll ]]]] & 31;
gi7 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll ]]]] & 31;
gi4 = perm[ii + perm[jj + + perm[kk + 1 + perm[ll]]]] & 31;
gi5 = perm[ii + 1 + perm[jj + + perm[kk + 1 + perm[ll]]]] & 31;
gi6 = perm[ii + perm[jj + 1 + perm[kk + 1 + perm[ll]]]] & 31;
gi7 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll]]]] & 31;
gi8 = perm[ii + perm[jj + perm[kk + perm[ll + 1]]]] & 31;
gi9 = perm[ii + 1 + perm[jj + perm[kk + perm[ll + 1]]]] & 31;
@ -64,10 +69,10 @@ T NzPerlin4D<T>::GetValue(T x, T y, T z, T w, T res)
gi14 = perm[ii + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] & 31;
gi15 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] & 31;
temp.x = nx-x0;
temp.y = ny-y0;
temp.z = nz-z0;
temp.w = nw-w0;
temp.x = x-x0;
temp.y = y-y0;
temp.z = z-z0;
temp.w = w-w0;
Cx = temp.x * temp.x * temp.x * (temp.x * (temp.x * 6 - 15) + 10);
Cy = temp.y * temp.y * temp.y * (temp.y * (temp.y * 6 - 15) + 10);
@ -76,55 +81,55 @@ T NzPerlin4D<T>::GetValue(T x, T y, T z, T w, T res)
s[0] = gradient4[gi0][0]*temp.x + gradient4[gi0][1]*temp.y + gradient4[gi0][2]*temp.z + gradient4[gi0][3]*temp.w;
temp.x = nx-(x0+1);
temp.x = x-(x0+1);
t[0] = gradient4[gi1][0]*temp.x + gradient4[gi1][1]*temp.y + gradient4[gi1][2]*temp.z + gradient4[gi1][3]*temp.w;
temp.y = ny-(y0+1);
temp.y = y-(y0+1);
v[0] = gradient4[gi3][0]*temp.x + gradient4[gi3][1]*temp.y + gradient4[gi3][2]*temp.z + gradient4[gi3][3]*temp.w;
temp.x = nx-x0;
temp.x = x-x0;
u[0] = gradient4[gi2][0]*temp.x + gradient4[gi2][1]*temp.y + gradient4[gi2][2]*temp.z + gradient4[gi2][3]*temp.w;
temp.y = ny-y0;
temp.z = nz-(z0+1);
temp.y = y-y0;
temp.z = z-(z0+1);
s[1] = gradient4[gi4][0]*temp.x + gradient4[gi4][1]*temp.y + gradient4[gi4][2]*temp.z + gradient4[gi4][3]*temp.w;
temp.x = nx-(x0+1);
temp.x = x-(x0+1);
t[1] = gradient4[gi5][0]*temp.x + gradient4[gi5][1]*temp.y + gradient4[gi5][2]*temp.z + gradient4[gi5][3]*temp.w;
temp.y = ny-(y0+1);
temp.y = y-(y0+1);
v[1] = gradient4[gi7][0]*temp.x + gradient4[gi7][1]*temp.y + gradient4[gi7][2]*temp.z + gradient4[gi7][3]*temp.w;
temp.x = nx-x0;
temp.x = x-x0;
u[1] = gradient4[gi6][0]*temp.x + gradient4[gi6][1]*temp.y + gradient4[gi6][2]*temp.z + gradient4[gi6][3]*temp.w;
temp.y = ny-y0;
temp.z = nz-z0;
temp.w = nw-(w0+1);
temp.y = y-y0;
temp.z = z-z0;
temp.w = w-(w0+1);
s[2] = gradient4[gi8][0]*temp.x + gradient4[gi8][1]*temp.y + gradient4[gi8][2]*temp.z + gradient4[gi8][3]*temp.w;
temp.x = nx-(x0+1);
temp.x = x-(x0+1);
t[2] = gradient4[gi9][0]*temp.x + gradient4[gi9][1]*temp.y + gradient4[gi9][2]*temp.z + gradient4[gi9][3]*temp.w;
temp.y = ny-(y0+1);
temp.y = y-(y0+1);
v[2] = gradient4[gi11][0]*temp.x + gradient4[gi11][1]*temp.y + gradient4[gi11][2]*temp.z + gradient4[gi11][3]*temp.w;
temp.x = nx-x0;
temp.x = x-x0;
u[2] = gradient4[gi10][0]*temp.x + gradient4[gi10][1]*temp.y + gradient4[gi10][2]*temp.z + gradient4[gi10][3]*temp.w;
temp.y = ny-y0;
temp.z = nz-(z0+1);
temp.y = y-y0;
temp.z = z-(z0+1);
s[3] = gradient4[gi12][0]*temp.x + gradient4[gi12][1]*temp.y + gradient4[gi12][2]*temp.z + gradient4[gi12][3]*temp.w;
temp.x = nx-(x0+1);
temp.x = x-(x0+1);
t[3] = gradient4[gi13][0]*temp.x + gradient4[gi13][1]*temp.y + gradient4[gi13][2]*temp.z + gradient4[gi13][3]*temp.w;
temp.y = ny-(y0+1);
temp.y = y-(y0+1);
v[3] = gradient4[gi15][0]*temp.x + gradient4[gi15][1]*temp.y + gradient4[gi15][2]*temp.z + gradient4[gi15][3]*temp.w;
temp.x = nx-x0;
temp.x = x-x0;
u[3] = gradient4[gi14][0]*temp.x + gradient4[gi14][1]*temp.y + gradient4[gi14][2]*temp.z + gradient4[gi14][3]*temp.w;
Li1 = s[0] + Cx*(t[0]-s[0]);
@ -146,5 +151,3 @@ T NzPerlin4D<T>::GetValue(T x, T y, T z, T w, T res)
return Li13 + Cw*(Li14-Li13);
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -4,12 +4,12 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Simplex2D.hpp>
#include <Nazara/Noise/Debug.hpp>
template <typename T>
NzSimplex2D<T>::NzSimplex2D()
NzSimplex2D::NzSimplex2D()
{
T grad2Temp[][2] = {{1,1},{-1,1},{1,-1},{-1,-1},
float grad2Temp[][2] = {{1,1},{-1,1},{1,-1},{-1,-1},
{1,0},{-1,0},{0,1},{0,-1}};
for(int i(0) ; i < 8 ; ++i)
@ -20,11 +20,16 @@ NzSimplex2D<T>::NzSimplex2D()
UnskewCoeff2D = (3.0-sqrt(3.0))/6.;
}
template <typename T>
T NzSimplex2D<T>::GetValue(T x, T y, T res)
NzSimplex2D::NzSimplex2D(unsigned int seed) : NzSimplex2D()
{
x /= res;
y /= res;
this->SetNewSeed(seed);
this->ShufflePermutationTable();
}
float NzSimplex2D::GetValue(float x, float y, float resolution)
{
x *= resolution;
y *= resolution;
sum = (x + y) * SkewCoeff2D;
skewedCubeOrigin.x = fastfloor(x + sum);
@ -84,5 +89,3 @@ T NzSimplex2D<T>::GetValue(T x, T y, T res)
return (n1+n2+n3)*70;
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -4,10 +4,10 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Simplex3D.hpp>
#include <Nazara/Noise/Debug.hpp>
template <typename T>
NzSimplex3D<T>::NzSimplex3D()
NzSimplex3D::NzSimplex3D()
{
SkewCoeff3D = 1/3.;
UnskewCoeff3D = 1/6.;
@ -21,12 +21,17 @@ NzSimplex3D<T>::NzSimplex3D()
gradient3[i][j] = grad3Temp[i][j];
}
template <typename T>
T NzSimplex3D<T>::GetValue(T x, T y, T z, T res)
NzSimplex3D::NzSimplex3D(unsigned int seed) : NzSimplex3D()
{
x /= res;
y /= res;
z /= res;
this->SetNewSeed(seed);
this->ShufflePermutationTable();
}
float NzSimplex3D::GetValue(float x, float y, float z, float resolution)
{
x *= resolution;
y *= resolution;
z *= resolution;
sum = (x + y + z) * SkewCoeff3D;
skewedCubeOrigin.x = fastfloor(x + sum);
@ -153,5 +158,3 @@ T NzSimplex3D<T>::GetValue(T x, T y, T z, T res)
return (n1+n2+n3+n4)*32;
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -4,10 +4,10 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Noise/Config.hpp>
#include <Nazara/Noise/Simplex4D.hpp>
#include <Nazara/Noise/Debug.hpp>
template <typename T>
NzSimplex4D<T>::NzSimplex4D()
NzSimplex4D::NzSimplex4D()
{
SkewCoeff4D = (sqrt(5.) - 1.)/4.;
UnskewCoeff4D = (5. - sqrt(5.))/20.;
@ -45,13 +45,18 @@ NzSimplex4D<T>::NzSimplex4D()
gradient4[i][j] = grad4Temp[i][j];
}
template <typename T>
T NzSimplex4D<T>::GetValue(T x, T y, T z, T w, T res)
NzSimplex4D::NzSimplex4D(unsigned int seed) : NzSimplex4D()
{
x /= res;
y /= res;
z /= res;
w /= res;
this->SetNewSeed(seed);
this->ShufflePermutationTable();
}
float NzSimplex4D::GetValue(float x, float y, float z, float w, float resolution)
{
x *= resolution;
y *= resolution;
z *= resolution;
w *= resolution;
sum = (x + y + z + w) * SkewCoeff4D;
skewedCubeOrigin.x = fastfloor(x + sum);
@ -120,11 +125,11 @@ T NzSimplex4D<T>::GetValue(T x, T y, T z, T w, T res)
kk = skewedCubeOrigin.z & 255;
ll = skewedCubeOrigin.w & 255;
gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] & 31;
gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] & 31;
gi1 = perm[ii + off1.x + perm[jj + off1.y + perm[kk + off1.z + perm[ll + off1.w]]]] & 31;
gi2 = perm[ii + off2.x + perm[jj + off2.y + perm[kk + off2.z + perm[ll + off2.w]]]] & 31;
gi3 = perm[ii + off3.x + perm[jj + off3.y + perm[kk + off3.z + perm[ll + off3.w]]]] & 31;
gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
c1 = 0.6 - d1.x*d1.x - d1.y*d1.y - d1.z*d1.z - d1.w*d1.w;
c2 = 0.6 - d2.x*d2.x - d2.y*d2.y - d2.z*d2.z - d2.w*d2.w;
@ -159,5 +164,3 @@ T NzSimplex4D<T>::GetValue(T x, T y, T z, T w, T res)
return (n1+n2+n3+n4+n5)*27.0;
}
#include <Nazara/Core/DebugOff.hpp>

View File

@ -148,6 +148,8 @@ void NzMaterial::Reset()
m_shininess = 0;
m_specularColor = NzColor::White;
m_srcBlend = nzBlendFunc_One;
m_textureFilter = nzTextureFilter_Default;
m_textureWrap = nzTextureWrap_Repeat;
m_zTestCompareFunc = nzRendererComparison_LessOrEqual;
m_zTestEnabled = true;
m_zWriteEnabled = true;