Math: Rework Box and Rect classes

This commit is contained in:
SirLynix
2022-12-18 14:57:14 +01:00
parent 811194bb97
commit 830eee78a8
28 changed files with 242 additions and 642 deletions

View File

@@ -30,9 +30,12 @@ namespace Nz
*/
template<typename T>
Rect<T>::Rect(T Width, T Height)
Rect<T>::Rect(T Width, T Height) :
x(0),
y(0),
width(Width),
height(Height)
{
Set(Width, Height);
}
/*!
@@ -43,53 +46,29 @@ namespace Nz
* \param Width Width of the rectangle (following X)
* \param Height Height of the rectangle (following Y)
*/
template<typename T>
Rect<T>::Rect(T X, T Y, T Width, T Height)
Rect<T>::Rect(T X, T Y, T Width, T Height) :
x(X),
y(Y),
width(Width),
height(Height)
{
Set(X, Y, Width, Height);
}
/*!
* \brief Constructs a Rect object from an array of four elements
* \brief Constructs a Rect object from two vector representing position and lengths
*
* \param vec[4] vec[0] is X position, vec[1] is Y position, vec[2] is width and vec[3] is height
* \param pos (X, Y) of the rect
* \param lengths (Width, Height) of the rect
*/
template<typename T>
Rect<T>::Rect(const T vec[4])
Rect<T>::Rect(const Vector2<T>& pos, const Vector2<T>& lengths) :
x(pos.x),
y(pos.y),
width(lengths.x),
height(lengths.y)
{
Set(vec);
}
/*!
* \brief Constructs a Rect object from a vector representing width and height
*
* \param lengths (Width, Height) of the rectangle
*
* \remark X and Y will be (0, 0)
*/
template<typename T>
Rect<T>::Rect(const Vector2<T>& lengths)
{
Set(lengths);
}
/*!
* \brief Constructs a Rect object from two vectors representing point of the space
* (X, Y) will be the components minimum of the two vectors and the width and height will be the components maximum - minimum
*
* \param vec1 First point
* \param vec2 Second point
*/
template<typename T>
Rect<T>::Rect(const Vector2<T>& vec1, const Vector2<T>& vec2)
{
Set(vec1, vec2);
}
/*!
* \brief Constructs a Rect object from another type of Rect
*
@@ -98,9 +77,12 @@ namespace Nz
template<typename T>
template<typename U>
Rect<T>::Rect(const Rect<U>& rect)
Rect<T>::Rect(const Rect<U>& rect) :
x(static_cast<T>(rect.x)),
y(static_cast<T>(rect.y)),
width(static_cast<T>(rect.width)),
height(static_cast<T>(rect.height))
{
Set(rect);
}
/*!
@@ -128,7 +110,6 @@ namespace Nz
*
* \see Contains
*/
template<typename T>
bool Rect<T>::Contains(const Rect<T>& rect) const
{
@@ -144,7 +125,6 @@ namespace Nz
*
* \see Contains
*/
template<typename T>
bool Rect<T>::Contains(const Vector2<T>& point) const
{
@@ -160,7 +140,6 @@ namespace Nz
*
* \see ExtendTo
*/
template<typename T>
Rect<T>& Rect<T>::ExtendTo(T X, T Y)
{
@@ -184,7 +163,6 @@ namespace Nz
*
* \see ExtendTo
*/
template<typename T>
Rect<T>& Rect<T>::ExtendTo(const Rect& rect)
{
@@ -385,13 +363,22 @@ namespace Nz
/*!
* \brief Checks whether this rectangle is valid
* \return true if the rectangle has a strictly positive width and height
* \return true if the rectangle has a positive width and height
*/
template<typename T>
bool Rect<T>::IsNull() const
{
return width <= T(0.0) && height <= T(0.0);
}
/*!
* \brief Checks whether this rectangle is valid
* \return true if the rectangle has a positive width and height
*/
template<typename T>
bool Rect<T>::IsValid() const
{
return width > T(0.0) && height > T(0.0);
return width >= T(0.0) && height >= T(0.0);
}
/*!
@@ -413,115 +400,33 @@ namespace Nz
}
/*!
* \brief Sets the components of the rectangle with width and height
* \return A reference to this rectangle
* \brief Multiplies the lengths of this rectangle with the scalar
* \return A reference to this rectangle where lengths are the product of these lengths and the scalar
*
* \param Width Width of the rectangle (following X)
* \param Height Height of the rectangle (following Y)
*
* \remark Position will be (0, 0)
* \param scalar The scalar to multiply width and height with
*/
template<typename T>
Rect<T>& Rect<T>::Set(T Width, T Height)
Rect<T>& Rect<T>::Scale(T scalar)
{
x = T(0.0);
y = T(0.0);
width = Width;
height = Height;
width *= scalar;
height *= scalar;
return *this;
}
/*!
* \brief Sets the components of the rectangle
* \return A reference to this rectangle
* \brief Multiplies the lengths of this rectangle with the vector
* \return A reference to this rectangle where width and height are the product of the old width and height with the vec
*
* \param X X position
* \param Y Y position
* \param Width Width of the rectangle (following X)
* \param Height Height of the rectangle (following Y)
* \param vec The vector where component one multiply width and two height
*/
template<typename T>
Rect<T>& Rect<T>::Set(T X, T Y, T Width, T Height)
Rect<T>& Rect<T>::Scale(const Vector2<T>& vec)
{
x = X;
y = Y;
width = Width;
height = Height;
return *this;
}
/*!
* \brief Sets the components of the rectangle from an array of four elements
* \return A reference to this rectangle
*
* \param rect[4] rect[0] is X position, rect[1] is Y position, rect[2] is width and rect[3] is height
*/
template<typename T>
Rect<T>& Rect<T>::Set(const T rect[4])
{
x = rect[0];
y = rect[1];
width = rect[2];
height = rect[3];
return *this;
}
/*!
* \brief Sets the components of the rectange from a vector representing width and height
* \return A reference to this rectangle
*
* \param lengths (Width, Height) of the rectangle
*
* \remark Position will be (0, 0)
*/
template<typename T>
Rect<T>& Rect<T>::Set(const Vector2<T>& lengths)
{
return Set(lengths.x, lengths.y);
}
/*!
* \brief Sets a Rect object from two vectors representing point of the space
* (X, Y) will be the components minimum of the two vectors and the width and height will be the components maximum - minimum
* \return A reference to this rectangle
*
* \param vec1 First point
* \param vec2 Second point
*/
template<typename T>
Rect<T>& Rect<T>::Set(const Vector2<T>& vec1, const Vector2<T>& vec2)
{
x = std::min(vec1.x, vec2.x);
y = std::min(vec1.y, vec2.y);
width = (vec2.x > vec1.x) ? vec2.x - vec1.x : vec1.x - vec2.x;
height = (vec2.y > vec1.y) ? vec2.y - vec1.y : vec1.y - vec2.y;
return *this;
}
/*!
* \brief Sets the components of the rectangle from another type of Rect
* \return A reference to this rectangle
*
* \param rect Rectangle of type U to convert its components
*/
template<typename T>
template<typename U>
Rect<T>& Rect<T>::Set(const Rect<U>& rect)
{
x = T(rect.x);
y = T(rect.y);
width = T(rect.width);
height = T(rect.height);
width *= vec.x;
height *= vec.y;
return *this;
}
@@ -583,129 +488,13 @@ namespace Nz
*/
template<typename T>
T Rect<T>::operator[](std::size_t i) const
const T& Rect<T>::operator[](std::size_t i) const
{
NazaraAssert(i < 4, "Index out of range");
return *(&x+i);
}
/*!
* \brief Multiplies the lengths with the scalar
* \return A rectangle where the position is the same and width and height are the product of the old width and height and the scalar
*
* \param scalar The scalar to multiply width and height with
*/
template<typename T>
Rect<T> Rect<T>::operator*(T scalar) const
{
return Rect(x, y, width * scalar, height * scalar);
}
/*!
* \brief Multiplies the lengths with the vector
* \return A rectangle where the position is the same and width and height are the product of the old width and height with the vec
*
* \param vec The vector where component one multiply width and two height
*/
template<typename T>
Rect<T> Rect<T>::operator*(const Vector2<T>& vec) const
{
return Rect(x, y, width*vec.x, height*vec.y);
}
/*!
* \brief Divides the lengths with the scalar
* \return A rectangle where the position is the same and width and height are the quotient of the old width and height and the scalar
*
* \param scalar The scalar to divide width and height with
*/
template<typename T>
Rect<T> Rect<T>::operator/(T scalar) const
{
return Rect(x, y, width / scalar, height / scalar);
}
/*!
* \brief Divides the lengths with the vector
* \return A rectangle where the position is the same and width and height are the quotient of the old width and height with the vec
*
* \param vec The vector where component one divide width and two height
*/
template<typename T>
Rect<T> Rect<T>::operator/(const Vector2<T>& vec) const
{
return Rect(x, y, width/vec.x, height/vec.y);
}
/*!
* \brief Multiplies the lengths of this rectangle with the scalar
* \return A reference to this rectangle where lengths are the product of these lengths and the scalar
*
* \param scalar The scalar to multiply width and height with
*/
template<typename T>
Rect<T>& Rect<T>::operator*=(T scalar)
{
width *= scalar;
height *= scalar;
return *this;
}
/*!
* \brief Multiplies the lengths of this rectangle with the vector
* \return A reference to this rectangle where width and height are the product of the old width and height with the vec
*
* \param vec The vector where component one multiply width and two height
*/
template<typename T>
Rect<T>& Rect<T>::operator*=(const Vector2<T>& vec)
{
width *= vec.x;
height *= vec.y;
return *this;
}
/*!
* \brief Divides the lengths of this rectangle with the scalar
* \return A reference to this rectangle where lengths are the quotient of these lengths and the scalar
*
* \param scalar The scalar to divide width and height with
*/
template<typename T>
Rect<T>& Rect<T>::operator/=(T scalar)
{
width /= scalar;
height /= scalar;
return *this;
}
/*!
* \brief Divives the lengths of this rectangle with the vector
* \return A reference to this rectangle where width and height are the quotient of the old width and height with the vec
*
* \param vec The vector where component one divide width and two height
*/
template<typename T>
Rect<T>& Rect<T>::operator/=(const Vector2<T>& vec)
{
width /= vec.x;
height /= vec.y;
return *this;
}
/*!
* \brief Compares the rectangle to other one
* \return true if the rectangles are the same
@@ -733,6 +522,26 @@ namespace Nz
return !operator==(rect);
}
/*!
* \brief Sets a Rect object from two vectors representing point of the space
* (X, Y) will be the components minimum of the two vectors and the width and height will be the components maximum - minimum
* \return A reference to this rectangle
*
* \param vec1 First point
* \param vec2 Second point
*/
template<typename T>
Rect<T> Rect<T>::FromExtends(const Vector2<T>& vec1, const Vector2<T>& vec2)
{
Rect rect;
rect.x = std::min(vec1.x, vec2.x);
rect.y = std::min(vec1.y, vec2.y);
rect.width = (vec2.x > vec1.x) ? vec2.x - vec1.x : vec1.x - vec2.x;
rect.height = (vec2.y > vec1.y) ? vec2.y - vec1.y : vec1.y - vec2.y;
return rect;
}
/*!
* \brief Interpolates the rectangle to other one with a factor of interpolation
* \return A new rectangle which is the interpolation of two rectangles
@@ -741,23 +550,11 @@ namespace Nz
* \param to Target rectangle
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Zero() is returned
*
* \see Lerp
*/
template<typename T>
Rect<T> Rect<T>::Lerp(const Rect& from, const Rect& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < T(0.0) || interpolation > T(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NumberToString(interpolation) + ')');
return Zero();
}
#endif
Rect rect;
rect.x = Nz::Lerp(from.x, to.x, interpolation);
rect.y = Nz::Lerp(from.y, to.y, interpolation);
@@ -773,14 +570,22 @@ namespace Nz
*
* \see MakeZero
*/
template<typename T>
Rect<T> Rect<T>::Invalid()
{
return Rect(-1, -1, -1, -1);
}
/*!
* \brief Shorthand for the rectangle (0, 0, 0, 0)
* \return A rectangle with position (0, 0) and lengths (0, 0)
*
* \see MakeZero
*/
template<typename T>
Rect<T> Rect<T>::Zero()
{
Rect rect;
rect.MakeZero();
return rect;
return Rect(0, 0, 0, 0);
}
/*!