Physics: Rename PhysGeom to Collider3D

This commit is contained in:
Lynix
2016-10-13 06:08:17 +02:00
parent 24f1859ec2
commit 8781a628e0
4 changed files with 44 additions and 44 deletions

View File

@@ -0,0 +1,448 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Physics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics3D/Geom.hpp>
#include <Nazara/Physics3D/PhysWorld.hpp>
#include <Newton/Newton.h>
#include <memory>
#include <Nazara/Physics3D/Debug.hpp>
namespace Nz
{
namespace
{
PhysGeomRef CreateGeomFromPrimitive(const Primitive& primitive)
{
switch (primitive.type)
{
case PrimitiveType_Box:
return BoxGeom::New(primitive.box.lengths, primitive.matrix);
case PrimitiveType_Cone:
return ConeGeom::New(primitive.cone.length, primitive.cone.radius, primitive.matrix);
case PrimitiveType_Plane:
return BoxGeom::New(Vector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
///TODO: PlaneGeom?
case PrimitiveType_Sphere:
return SphereGeom::New(primitive.sphere.size, primitive.matrix.GetTranslation());
}
NazaraError("Primitive type not handled (0x" + String::Number(primitive.type, 16) + ')');
return PhysGeomRef();
}
}
Collider3D::~Collider3D()
{
for (auto& pair : m_handles)
NewtonDestroyCollision(pair.second);
}
Boxf Collider3D::ComputeAABB(const Vector3f& translation, const Quaternionf& rotation, const Vector3f& scale) const
{
return ComputeAABB(Matrix4f::Transform(translation, rotation), scale);
}
Boxf Collider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f min, max;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
PhysWorld world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonCollisionCalculateAABB(collision, offsetMatrix, min, max);
}
NewtonDestroyCollision(collision);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonCollisionCalculateAABB(m_handles.begin()->second, offsetMatrix, min, max);
return Boxf(scale * min, scale * max);
}
void Collider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
float inertiaMatrix[3];
float origin[3];
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
PhysWorld world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
}
NewtonDestroyCollision(collision);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);
if (inertia)
inertia->Set(inertiaMatrix);
if (center)
center->Set(origin);
}
float Collider3D::ComputeVolume() const
{
float volume;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
PhysWorld world;
NewtonCollision* collision = CreateHandle(&world);
{
volume = NewtonConvexCollisionCalculateVolume(collision);
}
NewtonDestroyCollision(collision);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
volume = NewtonConvexCollisionCalculateVolume(m_handles.begin()->second);
return volume;
}
NewtonCollision* Collider3D::GetHandle(PhysWorld* world) const
{
auto it = m_handles.find(world);
if (it == m_handles.end())
it = m_handles.insert(std::make_pair(world, CreateHandle(world))).first;
return it->second;
}
PhysGeomRef Collider3D::Build(const PrimitiveList& list)
{
std::size_t primitiveCount = list.GetSize();
if (primitiveCount > 1)
{
std::vector<Collider3D*> geoms(primitiveCount);
for (unsigned int i = 0; i < primitiveCount; ++i)
geoms[i] = CreateGeomFromPrimitive(list.GetPrimitive(i));
return CompoundGeom::New(&geoms[0], primitiveCount);
}
else if (primitiveCount > 0)
return CreateGeomFromPrimitive(list.GetPrimitive(0));
else
return NullGeom::New();
}
bool Collider3D::Initialize()
{
if (!PhysGeomLibrary::Initialize())
{
NazaraError("Failed to initialise library");
return false;
}
return true;
}
void Collider3D::Uninitialize()
{
PhysGeomLibrary::Uninitialize();
}
PhysGeomLibrary::LibraryMap Collider3D::s_library;
/********************************** BoxGeom **********************************/
BoxGeom::BoxGeom(const Vector3f& lengths, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_lengths(lengths)
{
}
BoxGeom::BoxGeom(const Vector3f& lengths, const Vector3f& translation, const Quaternionf& rotation) :
BoxGeom(lengths, Matrix4f::Transform(translation, rotation))
{
}
Boxf BoxGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f halfLengths(m_lengths * 0.5f);
Boxf aabb(-halfLengths.x, -halfLengths.y, -halfLengths.z, m_lengths.x, m_lengths.y, m_lengths.z);
aabb.Transform(offsetMatrix, true);
aabb *= scale;
return aabb;
}
float BoxGeom::ComputeVolume() const
{
return m_lengths.x * m_lengths.y * m_lengths.z;
}
Vector3f BoxGeom::GetLengths() const
{
return m_lengths;
}
GeomType BoxGeom::GetType() const
{
return GeomType_Box;
}
NewtonCollision* BoxGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateBox(world->GetHandle(), m_lengths.x, m_lengths.y, m_lengths.z, 0, m_matrix);
}
/******************************** CapsuleGeom ********************************/
CapsuleGeom::CapsuleGeom(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CapsuleGeom::CapsuleGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CapsuleGeom(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CapsuleGeom::GetLength() const
{
return m_length;
}
float CapsuleGeom::GetRadius() const
{
return m_radius;
}
GeomType CapsuleGeom::GetType() const
{
return GeomType_Capsule;
}
NewtonCollision* CapsuleGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateCapsule(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/******************************* CompoundGeom ********************************/
CompoundGeom::CompoundGeom(Collider3D** geoms, std::size_t geomCount)
{
m_geoms.reserve(geomCount);
for (std::size_t i = 0; i < geomCount; ++i)
m_geoms.emplace_back(geoms[i]);
}
const std::vector<PhysGeomRef>& CompoundGeom::GetGeoms() const
{
return m_geoms;
}
GeomType CompoundGeom::GetType() const
{
return GeomType_Compound;
}
NewtonCollision* CompoundGeom::CreateHandle(PhysWorld* world) const
{
NewtonCollision* compoundCollision = NewtonCreateCompoundCollision(world->GetHandle(), 0);
NewtonCompoundCollisionBeginAddRemove(compoundCollision);
for (const PhysGeomRef& geom : m_geoms)
{
if (geom->GetType() == GeomType_Compound)
{
CompoundGeom* compoundGeom = static_cast<CompoundGeom*>(geom.Get());
for (const PhysGeomRef& piece : compoundGeom->GetGeoms())
NewtonCompoundCollisionAddSubCollision(compoundCollision, piece->GetHandle(world));
}
else
NewtonCompoundCollisionAddSubCollision(compoundCollision, geom->GetHandle(world));
}
NewtonCompoundCollisionEndAddRemove(compoundCollision);
return compoundCollision;
}
/********************************* ConeGeom **********************************/
ConeGeom::ConeGeom(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
ConeGeom::ConeGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
ConeGeom(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float ConeGeom::GetLength() const
{
return m_length;
}
float ConeGeom::GetRadius() const
{
return m_radius;
}
GeomType ConeGeom::GetType() const
{
return GeomType_Cone;
}
NewtonCollision* ConeGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateCone(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/****************************** ConvexHullGeom *******************************/
ConvexHullGeom::ConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_tolerance(tolerance),
m_vertexStride(stride)
{
const UInt8* ptr = static_cast<const UInt8*>(vertices);
m_vertices.resize(vertexCount);
if (stride != sizeof(Vector3f))
{
for (unsigned int i = 0; i < vertexCount; ++i)
m_vertices[i] = *reinterpret_cast<const Vector3f*>(ptr + stride*i);
}
else // Fast path
std::memcpy(m_vertices.data(), vertices, vertexCount*sizeof(Vector3f));
}
ConvexHullGeom::ConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const Vector3f& translation, const Quaternionf& rotation) :
ConvexHullGeom(vertices, vertexCount, stride, tolerance, Matrix4f::Transform(translation, rotation))
{
}
GeomType ConvexHullGeom::GetType() const
{
return GeomType_Compound;
}
NewtonCollision* ConvexHullGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateConvexHull(world->GetHandle(), static_cast<int>(m_vertices.size()), reinterpret_cast<const float*>(m_vertices.data()), sizeof(Vector3f), m_tolerance, 0, m_matrix);
}
/******************************* CylinderGeom ********************************/
CylinderGeom::CylinderGeom(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CylinderGeom::CylinderGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CylinderGeom(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CylinderGeom::GetLength() const
{
return m_length;
}
float CylinderGeom::GetRadius() const
{
return m_radius;
}
GeomType CylinderGeom::GetType() const
{
return GeomType_Cylinder;
}
NewtonCollision* CylinderGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateCylinder(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/********************************* NullGeom **********************************/
NullGeom::NullGeom()
{
}
GeomType NullGeom::GetType() const
{
return GeomType_Null;
}
void NullGeom::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
if (inertia)
inertia->MakeUnit();
if (center)
center->MakeZero();
}
NewtonCollision* NullGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateNull(world->GetHandle());
}
/******************************** SphereGeom *********************************/
SphereGeom::SphereGeom(float radius, const Matrix4f& transformMatrix) :
SphereGeom(radius, transformMatrix.GetTranslation())
{
}
SphereGeom::SphereGeom(float radius, const Vector3f& translation, const Quaternionf& rotation) :
m_position(translation),
m_radius(radius)
{
NazaraUnused(rotation);
}
Boxf SphereGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f size(m_radius * NazaraSuffixMacro(M_SQRT3, f) * scale);
Vector3f position(offsetMatrix.GetTranslation());
return Boxf(position - size, position + size);
}
float SphereGeom::ComputeVolume() const
{
return float(M_PI) * m_radius * m_radius * m_radius / 3.f;
}
float SphereGeom::GetRadius() const
{
return m_radius;
}
GeomType SphereGeom::GetType() const
{
return GeomType_Sphere;
}
NewtonCollision* SphereGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateSphere(world->GetHandle(), m_radius, 0, Matrix4f::Translate(m_position));
}
}