Wrong place

Former-commit-id: 909750e9bca284c2a0096a51c782c1083b258cef
This commit is contained in:
Gawaboumga 2015-08-21 12:02:55 +02:00
parent 282bdf9864
commit 9d7dc63574
8 changed files with 79 additions and 816 deletions

View File

@ -37,6 +37,9 @@ class NzPlane
NzString ToString() const;
bool operator==(const NzPlane& plane) const;
bool operator!=(const NzPlane& plane) const;
static NzPlane Lerp(const NzPlane& from, const NzPlane& to, T interpolation);
static NzPlane XY();
static NzPlane XZ();

View File

@ -49,7 +49,7 @@ NzPlane<T>::NzPlane(const NzPlane<U>& plane)
template<typename T>
T NzPlane<T>::Distance(const NzVector3<T>& point) const
{
return normal.DotProduct(point) + distance;
return normal.DotProduct(point) - distance; // ax + by + cd - d = 0.
}
template<typename T>
@ -110,7 +110,7 @@ NzPlane<T>& NzPlane<T>::Set(const NzVector3<T>& point1, const NzVector3<T>& poin
normal = edge1.CrossProduct(edge2);
normal.Normalize();
distance = -normal.DotProduct(point3);
distance = normal.DotProduct(point3);
return *this;
}
@ -133,6 +133,18 @@ NzString NzPlane<T>::ToString() const
return ss << "Plane(Normal: " << normal.ToString() << "; Distance: " << distance << ')';
}
template<typename T>
bool NzPlane<T>::operator==(const NzPlane& plane) const
{
return (normal == plane.normal && NzNumberEquals(distance, plane.distance)) || (normal == -plane.normal && NzNumberEquals(distance, -plane.distance));
}
template<typename T>
bool NzPlane<T>::operator!=(const NzPlane& plane) const
{
return !operator==(plane);
}
template<typename T>
NzPlane<T> NzPlane<T>::Lerp(const NzPlane& from, const NzPlane& to, T interpolation)
{
@ -155,19 +167,19 @@ NzPlane<T> NzPlane<T>::Lerp(const NzPlane& from, const NzPlane& to, T interpolat
template<typename T>
NzPlane<T> NzPlane<T>::XY()
{
return NzPlane<T>(F(0.0), F(0.0), F(1.0), F(0.0));
return NzPlane<T>(F(0.0), F(0.0), F(1.0), F(0.0));
}
template<typename T>
NzPlane<T> NzPlane<T>::XZ()
{
return NzPlane<T>(F(0.0), F(1.0), F(0.0), F(0.0));
return NzPlane<T>(F(0.0), F(1.0), F(0.0), F(0.0));
}
template<typename T>
NzPlane<T> NzPlane<T>::YZ()
{
return NzPlane<T>(F(1.0), F(0.0), F(0.0), F(0.0));
return NzPlane<T>(F(1.0), F(0.0), F(0.0), F(0.0));
}
template<typename T>

View File

@ -34,12 +34,12 @@ class NzRay
NzVector3<T> GetPoint(T lambda) const;
//bool Intersect(const NzBoundingVolume<T>& volume, T* closestHit = nullptr, T* farthestHit = nullptr) const;
bool Intersect(const NzBox<T>& box, T* closestHit = nullptr, T* farthestHit = nullptr) const;
bool Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit = nullptr, T* farthestHit = nullptr) const;
//bool Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit = nullptr, T* farthestHit = nullptr) const;
bool Intersect(const NzBoundingVolume<T>& volume, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzBox<T>& box, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzPlane<T>& plane, T* hit = nullptr) const;
bool Intersect(const NzSphere<T>& sphere, T* closestHit = nullptr, T* farthestHit = nullptr) const;
bool Intersect(const NzSphere<T>& sphere, T* closestHit = nullptr, T* furthestHit = nullptr) const;
NzRay& MakeAxisX();
NzRay& MakeAxisY();
@ -57,6 +57,9 @@ class NzRay
NzVector3<T> operator*(T lambda) const;
bool operator==(const NzRay& ray) const;
bool operator!=(const NzRay& ray) const;
static NzRay AxisX();
static NzRay AxisY();
static NzRay AxisZ();

View File

@ -59,18 +59,18 @@ T NzRay<T>::ClosestPoint(const NzVector3<T>& point) const
template<typename T>
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
{
return origin + lambda*direction;
return origin + lambda * direction;
}
/*
template<typename T>
bool NzRay<T>::Intersect(const NzBoundingVolume<T>& volume, T* closestHit, T* farthestHit) const
bool NzRay<T>::Intersect(const NzBoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
{
switch (volume.extend)
{
case nzExtend_Finite:
{
if (Intersect(volume.aabb))
return Intersect(volume.obb, closestHit, farthestHit);
return Intersect(volume.obb, closestHit, furthestHit);
return false;
}
@ -80,8 +80,8 @@ bool NzRay<T>::Intersect(const NzBoundingVolume<T>& volume, T* closestHit, T* fa
if (closestHit)
*closestHit = F(0.0);
if (farthestHit)
*farthestHit = std::numeric_limits<T>::infinity();
if (furthestHit)
*furthestHit = std::numeric_limits<T>::infinity();
return true;
}
@ -93,9 +93,9 @@ bool NzRay<T>::Intersect(const NzBoundingVolume<T>& volume, T* closestHit, T* fa
NazaraError("Invalid extend type (0x" + NzString::Number(volume.extend, 16) + ')');
return false;
}
*/
template<typename T>
bool NzRay<T>::Intersect(const NzBox<T>& box, T* closestHit, T* farthestHit) const
bool NzRay<T>::Intersect(const NzBox<T>& box, T* closestHit, T* furthestHit) const
{
// http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/
T tfirst = F(0.0);
@ -134,14 +134,14 @@ bool NzRay<T>::Intersect(const NzBox<T>& box, T* closestHit, T* farthestHit) con
if (closestHit)
*closestHit = tfirst;
if (farthestHit)
*farthestHit = tlast;
if (furthestHit)
*furthestHit = tlast;
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit, T* farthestHit) const
bool NzRay<T>::Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit, T* furthestHit) const
{
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
@ -192,32 +192,39 @@ bool NzRay<T>::Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T*
if (closestHit)
*closestHit = tMin;
if (farthestHit)
*farthestHit = tMax;
if (furthestHit)
*furthestHit = tMax;
return true;
}
///FIXME: Le test ci-dessous est beaucoup trop approximatif pour être vraiment utile
/// Mais le vrai problème vient certainement des OrientedBox en elles-mêmes, peut-être faut-il envisager de les refaire ?
/*
template<typename T>
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit, T* farthestHit) const
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
{
NzVector3<T> width = (orientedBox.GetCorner(nzBoxCorner_NearLeftBottom) - orientedBox.GetCorner(nzBoxCorner_FarLeftBottom)).Normalize();
NzVector3<T> height = (orientedBox.GetCorner(nzBoxCorner_FarLeftTop) - orientedBox.GetCorner(nzBoxCorner_FarLeftBottom)).Normalize();
NzVector3<T> depth = (orientedBox.GetCorner(nzBoxCorner_FarRightBottom) - orientedBox.GetCorner(nzBoxCorner_FarLeftBottom)).Normalize();
NzVector3<T> corner = orientedBox.GetCorner(nzBoxCorner_FarLeftBottom);
NzVector3<T> oppositeCorner = orientedBox.GetCorner(nzBoxCorner_NearRightTop);
NzVector3<T> width = (orientedBox.GetCorner(nzBoxCorner_NearLeftBottom) - corner);
NzVector3<T> height = (orientedBox.GetCorner(nzBoxCorner_FarLeftTop) - corner);
NzVector3<T> depth = (orientedBox.GetCorner(nzBoxCorner_FarRightBottom) - corner);
// Construction de la matrice de transformation de l'OBB
NzMatrix4<T> matrix(width.x, height.x, depth.x, F(0.0),
width.y, height.y, depth.y, F(0.0),
width.z, height.z, depth.z, F(0.0),
NzMatrix4<T> matrix(width.x, height.x, depth.x, corner.x,
width.y, height.y, depth.y, corner.y,
width.z, height.z, depth.z, corner.z,
F(0.0), F(0.0), F(0.0), F(1.0));
// Test en tant qu'AABB avec une matrice de rotation
return Intersect(orientedBox.localBox, matrix, closestHit, farthestHit);
matrix.InverseAffine();
corner = matrix.Transform(corner);
oppositeCorner = matrix.Transform(oppositeCorner);
NzBox<T> tmpBox(corner, oppositeCorner);
NzRay<T> tmpRay(matrix.Transform(origin), matrix.Transform(direction));
return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
}
*/
template<typename T>
bool NzRay<T>::Intersect(const NzPlane<T>& plane, T* hit) const
{
@ -225,9 +232,9 @@ bool NzRay<T>::Intersect(const NzPlane<T>& plane, T* hit) const
if (NzNumberEquals(divisor, F(0.0)))
return false; // perpendicular
T lambda = -(plane.normal.DotProduct(origin) + plane.distance) / divisor; // The plane is ax+by+cz=d
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
if (lambda < F(0.0))
return false; // Le plan est derrière le rayon
return false; // The plane is 'behind' the ray.
if (hit)
*hit = lambda;
@ -236,7 +243,7 @@ bool NzRay<T>::Intersect(const NzPlane<T>& plane, T* hit) const
}
template<typename T>
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, T* closestHit, T* farthestHit) const
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, T* closestHit, T* furthestHit) const
{
NzVector3<T> sphereRay = sphere.GetPosition() - origin;
T length = sphereRay.DotProduct(direction);
@ -251,15 +258,15 @@ bool NzRay<T>::Intersect(const NzSphere<T>& sphere, T* closestHit, T* farthestHi
return false; // if the ray is further than the radius
// Calcul des points d'intersection si besoin
if (closestHit || farthestHit)
if (closestHit || furthestHit)
{
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
if (closestHit)
*closestHit = length - deltaLambda;
if (farthestHit)
*farthestHit = length + deltaLambda;
if (furthestHit)
*furthestHit = length + deltaLambda;
}
return true;
@ -380,6 +387,18 @@ NzVector3<T> NzRay<T>::operator*(T lambda) const
return GetPoint(lambda);
}
template<typename T>
bool NzRay<T>::operator==(const NzRay& ray) const
{
return direction == ray.direction && origin == ray.origin;
}
template<typename T>
bool NzRay<T>::operator!=(const NzRay& ray) const
{
return !operator==(ray);
}
template<typename T>
NzRay<T> NzRay<T>::AxisX()
{

View File

@ -1,60 +0,0 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_PLANE_HPP
#define NAZARA_PLANE_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Vector3.hpp>
template<typename T>
class NzPlane
{
public:
NzPlane() = default;
NzPlane(T normalX, T normalY, T normalZ, T Distance);
NzPlane(const T plane[4]);
NzPlane(const NzVector3<T>& Normal, T Distance);
NzPlane(const NzVector3<T>& Normal, const NzVector3<T>& point);
NzPlane(const NzVector3<T>& point1, const NzVector3<T>& point2, const NzVector3<T>& point3);
template<typename U> explicit NzPlane(const NzPlane<U>& plane);
NzPlane(const NzPlane& plane) = default;
~NzPlane() = default;
T Distance(const NzVector3<T>& point) const;
T Distance(T x, T y, T z) const;
NzPlane& Set(T normalX, T normalY, T normalZ, T Distance);
NzPlane& Set(const T plane[4]);
NzPlane& Set(const NzPlane& plane);
NzPlane& Set(const NzVector3<T>& Normal, T Distance);
NzPlane& Set(const NzVector3<T>& Normal, const NzVector3<T>& point);
NzPlane& Set(const NzVector3<T>& point1, const NzVector3<T>& point2, const NzVector3<T>& point3);
template<typename U> NzPlane& Set(const NzPlane<U>& plane);
NzString ToString() const;
bool operator==(const NzPlane& plane) const;
bool operator!=(const NzPlane& plane) const;
static NzPlane Lerp(const NzPlane& from, const NzPlane& to, T interpolation);
static NzPlane XY();
static NzPlane XZ();
static NzPlane YZ();
NzVector3<T> normal;
T distance;
};
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzPlane<T>& plane);
typedef NzPlane<double> NzPlaned;
typedef NzPlane<float> NzPlanef;
#include <Nazara/Math/Plane.inl>
#endif // NAZARA_PLANE_HPP

View File

@ -1,193 +0,0 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Algorithm.hpp>
#include <cstring>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzPlane<T>::NzPlane(T normalX, T normalY, T normalZ, T D)
{
Set(normalX, normalY, normalZ, D);
}
template<typename T>
NzPlane<T>::NzPlane(const T plane[4])
{
Set(plane);
}
template<typename T>
NzPlane<T>::NzPlane(const NzVector3<T>& Normal, T D)
{
Set(Normal, D);
}
template<typename T>
NzPlane<T>::NzPlane(const NzVector3<T>& Normal, const NzVector3<T>& point)
{
Set(Normal, point);
}
template<typename T>
NzPlane<T>::NzPlane(const NzVector3<T>& point1, const NzVector3<T>& point2, const NzVector3<T>& point3)
{
Set(point1, point2, point3);
}
template<typename T>
template<typename U>
NzPlane<T>::NzPlane(const NzPlane<U>& plane)
{
Set(plane);
}
template<typename T>
T NzPlane<T>::Distance(const NzVector3<T>& point) const
{
return normal.DotProduct(point) - distance; // ax + by + cd - d = 0.
}
template<typename T>
T NzPlane<T>::Distance(T x, T y, T z) const
{
return Distance(NzVector3<T>(x, y, z));
}
template<typename T>
NzPlane<T>& NzPlane<T>::Set(T normalX, T normalY, T normalZ, T D)
{
distance = D;
normal.Set(normalX, normalY, normalZ);
return *this;
}
template<typename T>
NzPlane<T>& NzPlane<T>::Set(const T plane[4])
{
normal.Set(plane[0], plane[1], plane[2]);
distance = plane[3];
return *this;
}
template<typename T>
NzPlane<T>& NzPlane<T>::Set(const NzPlane& plane)
{
std::memcpy(this, &plane, sizeof(NzPlane));
return *this;
}
template<typename T>
NzPlane<T>& NzPlane<T>::Set(const NzVector3<T>& Normal, T D)
{
distance = D;
normal = Normal;
return *this;
}
template<typename T>
NzPlane<T>& NzPlane<T>::Set(const NzVector3<T>& Normal, const NzVector3<T>& point)
{
normal = Normal;
distance = -normal.DotProduct(point);
return *this;
}
template<typename T>
NzPlane<T>& NzPlane<T>::Set(const NzVector3<T>& point1, const NzVector3<T>& point2, const NzVector3<T>& point3)
{
NzVector3<T> edge1 = point2 - point1;
NzVector3<T> edge2 = point3 - point1;
normal = edge1.CrossProduct(edge2);
normal.Normalize();
distance = normal.DotProduct(point3);
return *this;
}
template<typename T>
template<typename U>
NzPlane<T>& NzPlane<T>::Set(const NzPlane<U>& plane)
{
normal.Set(plane.normal);
distance = F(plane.distance);
return *this;
}
template<typename T>
NzString NzPlane<T>::ToString() const
{
NzStringStream ss;
return ss << "Plane(Normal: " << normal.ToString() << "; Distance: " << distance << ')';
}
template<typename T>
bool NzPlane<T>::operator==(const NzPlane& plane) const
{
return (normal == plane.normal && NzNumberEquals(distance, plane.distance)) || (normal == -plane.normal && NzNumberEquals(distance, -plane.distance));
}
template<typename T>
bool NzPlane<T>::operator!=(const NzPlane& plane) const
{
return !operator==(plane);
}
template<typename T>
NzPlane<T> NzPlane<T>::Lerp(const NzPlane& from, const NzPlane& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NzString::Number(interpolation) + ')');
return NzPlane();
}
#endif
NzPlane plane;
plane.distance = NzLerp(from.distance, to.distance, interpolation);
plane.normal = NzVector3<T>::Lerp(from.normal, to.normal, interpolation);
plane.normal.Normalize();
return plane;
}
template<typename T>
NzPlane<T> NzPlane<T>::XY()
{
return NzPlane<T>(F(0.0), F(0.0), F(1.0), F(0.0));
}
template<typename T>
NzPlane<T> NzPlane<T>::XZ()
{
return NzPlane<T>(F(0.0), F(1.0), F(0.0), F(0.0));
}
template<typename T>
NzPlane<T> NzPlane<T>::YZ()
{
return NzPlane<T>(F(1.0), F(0.0), F(0.0), F(0.0));
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzPlane<T>& plane)
{
return out << plane.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>

View File

@ -1,78 +0,0 @@
// Copyright (C) 2015 Gawaboumga (https://github.com/Gawaboumga) - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_RAY_HPP
#define NAZARA_RAY_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Box.hpp>
#include <Nazara/Math/Frustum.hpp>
#include <Nazara/Math/Matrix4.hpp>
#include <Nazara/Math/OrientedBox.hpp>
#include <Nazara/Math/Plane.hpp>
#include <Nazara/Math/Sphere.hpp>
#include <Nazara/Math/Vector3.hpp>
template<typename T>
class NzRay
{
public:
NzRay() = default;
NzRay(T X, T Y, T Z, T directionX, T directionY, T directionZ);
NzRay(const T origin[3], const T direction[3]);
NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo);
NzRay(const NzVector3<T>& origin, const NzVector3<T>& direction);
template<typename U> explicit NzRay(const NzRay<U>& ray);
template<typename U> explicit NzRay(const NzVector3<U>& origin, const NzVector3<U>& direction);
NzRay(const NzRay<T>& ray) = default;
~NzRay() = default;
T ClosestPoint(const NzVector3<T>& point) const;
NzVector3<T> GetPoint(T lambda) const;
bool Intersect(const NzBoundingVolume<T>& volume, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzBox<T>& box, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const NzPlane<T>& plane, T* hit = nullptr) const;
bool Intersect(const NzSphere<T>& sphere, T* closestHit = nullptr, T* furthestHit = nullptr) const;
NzRay& MakeAxisX();
NzRay& MakeAxisY();
NzRay& MakeAxisZ();
NzRay& Set(T X, T Y, T Z, T directionX, T directionY, T directionZ);
NzRay& Set(const T origin[3], const T direction[3]);
NzRay& Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo);
NzRay& Set(const NzRay& ray);
NzRay& Set(const NzVector3<T>& origin, const NzVector3<T>& direction);
template<typename U> NzRay& Set(const NzRay<U>& ray);
template<typename U> NzRay& Set(const NzVector3<U>& origin, const NzVector3<U>& direction);
NzString ToString() const;
NzVector3<T> operator*(T lambda) const;
bool operator==(const NzRay& ray) const;
bool operator!=(const NzRay& ray) const;
static NzRay AxisX();
static NzRay AxisY();
static NzRay AxisZ();
static NzRay Lerp(const NzRay& from, const NzRay& to, T interpolation);
NzVector3<T> direction, origin;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzRay<T>& vec);
typedef NzRay<double> NzRayd;
typedef NzRay<float> NzRayf;
#include <Nazara/Math/Ray.inl>
#endif // NAZARA_RAY_HPP

View File

@ -1,443 +0,0 @@
// Copyright (C) 2015 Gawaboumga (https://github.com/Gawaboumga) - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzRay<T>::NzRay(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
{
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
}
template<typename T>
NzRay<T>::NzRay(const T Origin[3], const T Direction[3])
{
Set(Origin, Direction);
}
template<typename T>
NzRay<T>::NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
{
Set(planeOne, planeTwo);
}
template<typename T>
NzRay<T>::NzRay(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
template<typename U>
NzRay<T>::NzRay(const NzRay<U>& ray)
{
Set(ray);
}
template<typename T>
template<typename U>
NzRay<T>::NzRay(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
T NzRay<T>::ClosestPoint(const NzVector3<T>& point) const
{
NzVector3<T> delta = point - origin;
T vsq = direction.GetSquaredLength();
T proj = delta.DotProduct(direction);
return proj/vsq;
}
template<typename T>
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
{
return origin + lambda * direction;
}
template<typename T>
bool NzRay<T>::Intersect(const NzBoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
{
switch (volume.extend)
{
case nzExtend_Finite:
{
if (Intersect(volume.aabb))
return Intersect(volume.obb, closestHit, furthestHit);
return false;
}
case nzExtend_Infinite:
{
if (closestHit)
*closestHit = F(0.0);
if (furthestHit)
*furthestHit = std::numeric_limits<T>::infinity();
return true;
}
case nzExtend_Null:
return false;
}
NazaraError("Invalid extend type (0x" + NzString::Number(volume.extend, 16) + ')');
return false;
}
template<typename T>
bool NzRay<T>::Intersect(const NzBox<T>& box, T* closestHit, T* furthestHit) const
{
// http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/
T tfirst = F(0.0);
T tlast = std::numeric_limits<T>::infinity();
NzVector3<T> boxMin = box.GetMinimum();
NzVector3<T> boxMax = box.GetMaximum();
for (unsigned int i = 0; i < 3; ++i)
{
T dir = direction[i];
T ori = origin[i];
T max = boxMax[i];
T min = boxMin[i];
if (NzNumberEquals(dir, F(0.0)))
{
if (ori < max && ori > min)
continue;
return false;
}
T tmin = (min - ori) / dir;
T tmax = (max - ori) / dir;
if (tmin > tmax)
std::swap(tmin, tmax);
if (tmax < tfirst || tmin > tlast)
return false;
tfirst = std::max(tfirst, tmin);
tlast = std::min(tlast, tmax);
}
if (closestHit)
*closestHit = tfirst;
if (furthestHit)
*furthestHit = tlast;
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit, T* furthestHit) const
{
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
T tMin = F(0.0);
T tMax = std::numeric_limits<T>::infinity();
NzVector3<T> boxMin = box.GetMinimum();
NzVector3<T> boxMax = box.GetMaximum();
NzVector3<T> delta = transform.GetTranslation() - origin;
// Test intersection with the 2 planes perpendicular to the OBB's X axis
for (unsigned int i = 0; i < 3; ++i)
{
NzVector3<T> axis(transform(0, i), transform(1, i), transform(2, i));
T e = axis.DotProduct(delta);
T f = direction.DotProduct(axis);
if (!NzNumberEquals(f, F(0.0)))
{
T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane
T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
// We want t1 to represent the nearest intersection,
// so if it's not the case, invert t1 and t2
if (t1 > t2)
std::swap(t1, t2);
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
if (t2 < tMax)
tMax = t2;
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
if (t1 > tMin)
tMin = t1;
// And here's the trick :
// If "far" is closer than "near", then there is NO intersection.
if (tMax < tMin)
return false;
}
else
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
if (-e + boxMin[i] > F(0.0) || -e + boxMax[i] < F(0.0))
return false;
}
if (closestHit)
*closestHit = tMin;
if (furthestHit)
*furthestHit = tMax;
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
{
NzVector3<T> corner = orientedBox.GetCorner(nzBoxCorner_FarLeftBottom);
NzVector3<T> oppositeCorner = orientedBox.GetCorner(nzBoxCorner_NearRightTop);
NzVector3<T> width = (orientedBox.GetCorner(nzBoxCorner_NearLeftBottom) - corner);
NzVector3<T> height = (orientedBox.GetCorner(nzBoxCorner_FarLeftTop) - corner);
NzVector3<T> depth = (orientedBox.GetCorner(nzBoxCorner_FarRightBottom) - corner);
// Construction de la matrice de transformation de l'OBB
NzMatrix4<T> matrix(width.x, height.x, depth.x, corner.x,
width.y, height.y, depth.y, corner.y,
width.z, height.z, depth.z, corner.z,
F(0.0), F(0.0), F(0.0), F(1.0));
matrix.InverseAffine();
corner = matrix.Transform(corner);
oppositeCorner = matrix.Transform(oppositeCorner);
NzBox<T> tmpBox(corner, oppositeCorner);
NzRay<T> tmpRay(matrix.Transform(origin), matrix.Transform(direction));
return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
}
template<typename T>
bool NzRay<T>::Intersect(const NzPlane<T>& plane, T* hit) const
{
T divisor = plane.normal.DotProduct(direction);
if (NzNumberEquals(divisor, F(0.0)))
return false; // perpendicular
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
if (lambda < F(0.0))
return false; // The plane is 'behind' the ray.
if (hit)
*hit = lambda;
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, T* closestHit, T* furthestHit) const
{
NzVector3<T> sphereRay = sphere.GetPosition() - origin;
T length = sphereRay.DotProduct(direction);
if (length < F(0.0))
return false; // ray is perpendicular to the vector origin - center
T squaredDistance = sphereRay.GetSquaredLength() - length*length;
T squaredRadius = sphere.radius*sphere.radius;
if (squaredDistance > squaredRadius)
return false; // if the ray is further than the radius
// Calcul des points d'intersection si besoin
if (closestHit || furthestHit)
{
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
if (closestHit)
*closestHit = length - deltaLambda;
if (furthestHit)
*furthestHit = length + deltaLambda;
}
return true;
}
template<typename T>
NzRay<T>& NzRay<T>::MakeAxisX()
{
return Set(NzVector3<T>::Zero(), NzVector3<T>::UnitX());
}
template<typename T>
NzRay<T>& NzRay<T>::MakeAxisY()
{
return Set(NzVector3<T>::Zero(), NzVector3<T>::UnitY());
}
template<typename T>
NzRay<T>& NzRay<T>::MakeAxisZ()
{
return Set(NzVector3<T>::Zero(), NzVector3<T>::UnitZ());
}
template<typename T>
NzRay<T>& NzRay<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
{
direction.Set(directionX, directionY, directionZ);
origin.Set(X, Y, Z);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const T Origin[3], const T Direction[3])
{
direction.Set(Direction);
origin.Set(Origin);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
{
T termOne = planeOne.normal.GetLength();
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
T termFour = planeTwo.normal.GetLength();
T det = termOne * termFour - termTwo * termTwo;
#if NAZARA_MATH_SAFE
if (NzNumberEquals(det, F(0.0)))
{
NzString error("Planes are parallel.");
NazaraError(error);
throw std::domain_error(error);
}
#endif
T invdet = F(1.0) / det;
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
direction = planeOne.normal.CrossProduct(planeTwo.normal);
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzRay& ray)
{
std::memcpy(this, &ray, sizeof(NzRay));
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
{
direction = Direction;
origin = Origin;
return *this;
}
template<typename T>
template<typename U>
NzRay<T>& NzRay<T>::Set(const NzRay<U>& ray)
{
direction.Set(ray.direction);
origin.Set(ray.origin);
return *this;
}
template<typename T>
template<typename U>
NzRay<T>& NzRay<T>::Set(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
{
direction.Set(Direction);
origin.Set(Origin);
return *this;
}
template<typename T>
NzString NzRay<T>::ToString() const
{
NzStringStream ss;
return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")";
}
template<typename T>
NzVector3<T> NzRay<T>::operator*(T lambda) const
{
return GetPoint(lambda);
}
template<typename T>
bool NzRay<T>::operator==(const NzRay& ray) const
{
return direction == ray.direction && origin == ray.origin;
}
template<typename T>
bool NzRay<T>::operator!=(const NzRay& ray) const
{
return !operator==(ray);
}
template<typename T>
NzRay<T> NzRay<T>::AxisX()
{
NzRay axis;
axis.MakeAxisX();
return axis;
}
template<typename T>
NzRay<T> NzRay<T>::AxisY()
{
NzRay axis;
axis.MakeAxisY();
return axis;
}
template<typename T>
NzRay<T> NzRay<T>::AxisZ()
{
NzRay axis;
axis.MakeAxisZ();
return axis;
}
template<typename T>
NzRay<T> NzRay<T>::Lerp(const NzRay& from, const NzRay& to, T interpolation)
{
return NzRay<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzRay<T>& ray)
{
return out << ray.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>