Graphics: Update material shaders

This commit is contained in:
SirLynix 2023-11-16 09:00:21 +01:00
parent 3b61face6f
commit b7aca4b22a
6 changed files with 267 additions and 279 deletions

View File

@ -89,6 +89,10 @@ namespace Nz
#include <Nazara/Graphics/Resources/Shaders/Modules/Math/CookTorrancePBR.nzslb.h>
};
const UInt8 r_mathDepthModule[] = {
#include <Nazara/Graphics/Resources/Shaders/Modules/Math/Depth.nzslb.h>
};
// Passes
const UInt8 r_gammaCorrectionPass[] = {
#include <Nazara/Graphics/Resources/Shaders/Passes/GammaCorrection.nzslb.h>
@ -487,6 +491,7 @@ namespace Nz
RegisterEmbedShaderModule(r_mathColorModule);
RegisterEmbedShaderModule(r_mathConstantsModule);
RegisterEmbedShaderModule(r_mathCookTorrancePBRModule);
RegisterEmbedShaderModule(r_mathDepthModule);
RegisterEmbedShaderModule(r_phongMaterialShader);
RegisterEmbedShaderModule(r_physicallyBasedMaterialShader);
RegisterEmbedShaderModule(r_skinningDataModule);

View File

@ -72,7 +72,7 @@ external
[tag("SkeletalData")] skeletalData: uniform[SkeletalData]
}
struct VertToFrag
struct VertOut
{
[location(0)] worldPos: vec3[f32],
[location(1), cond(HasUV)] uv: vec2[f32],
@ -87,7 +87,7 @@ struct FragOut
[builtin(frag_depth), cond(DistanceDepth)] fragdepth: f32
}
fn ComputeColor(input: VertToFrag) -> vec4[f32]
fn ComputeColor(input: VertOut) -> vec4[f32]
{
let color = settings.BaseColor;
@ -103,19 +103,20 @@ fn ComputeColor(input: VertToFrag) -> vec4[f32]
const if (HasAlphaTexture)
color.w *= MaterialAlphaMap.Sample(input.uv).x;
return color;
}
[entry(frag), cond(!DepthPass || AlphaTest)]
fn main(input: VertToFrag) -> FragOut
{
let color = ComputeColor(input);
const if (AlphaTest)
{
if (color.w < settings.AlphaThreshold)
discard;
}
return color;
}
[entry(frag), cond(!DepthPass || AlphaTest)]
fn FragMain(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
let output: FragOut;
output.RenderTarget0 = color;
return output;
@ -124,14 +125,9 @@ fn main(input: VertToFrag) -> FragOut
// Shadow passes entries
[entry(frag), cond(DepthPass && DistanceDepth)]
[depth_write(replace)]
fn main(input: VertToFrag) -> FragOut
fn FragDepthDist(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
const if (AlphaTest)
{
if (color.w < settings.AlphaThreshold)
discard;
}
let output: FragOut;
output.RenderTarget0 = color;
@ -143,11 +139,9 @@ fn main(input: VertToFrag) -> FragOut
}
[entry(frag), cond(DepthPass && AlphaTest && !DistanceDepth)]
fn main(input: VertToFrag) -> FragOut
fn FragDepth(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
if (color.w < settings.AlphaThreshold)
discard;
let output: FragOut;
output.RenderTarget0 = color;
@ -155,7 +149,7 @@ fn main(input: VertToFrag) -> FragOut
}
[entry(frag), cond(DepthPass && !AlphaTest && !DistanceDepth)]
fn main() {} //< dummy
fn FragDepthNoAlpha() {} //< dummy
// Vertex stage
struct VertIn
@ -189,7 +183,7 @@ struct VertIn
}
[entry(vert), cond(Billboard)]
fn billboardMain(input: VertIn) -> VertToFrag
fn VertBillboard(input: VertIn) -> VertOut
{
let size = input.billboardSizeRot.xy;
let sinCos = input.billboardSizeRot.zw;
@ -209,7 +203,7 @@ fn billboardMain(input: VertIn) -> VertToFrag
let worldPosition = instanceData.worldMatrix * vec4[f32](vertexPos, 1.0);
let output: VertToFrag;
let output: VertOut;
output.worldPos = worldPosition.xyz;
output.position = viewerData.viewProjMatrix * worldPosition;
@ -223,7 +217,7 @@ fn billboardMain(input: VertIn) -> VertToFrag
}
[entry(vert), cond(!Billboard)]
fn main(input: VertIn) -> VertToFrag
fn VertMain(input: VertIn) -> VertOut
{
let pos: vec3[f32];
@ -251,7 +245,7 @@ fn main(input: VertIn) -> VertToFrag
let worldPosition = instanceData.worldMatrix * vec4[f32](pos, 1.0);
let output: VertToFrag;
let output: VertOut;
output.worldPos = worldPosition.xyz;
output.position = viewerData.viewProjMatrix * worldPosition;

View File

@ -0,0 +1,8 @@
[nzsl_version("1.0")]
module Math.Depth;
[export]
fn LinearizeDepth(depth: f32, zNear: f32, zFar: f32) -> f32
{
return zNear * zFar / (zFar + depth * (zNear - zFar));
}

View File

@ -111,7 +111,7 @@ external
[tag("ShadowMapsSpot")] shadowMapsSpot: array[depth_sampler2D[f32], MaxLightCount],
}
struct VertToFrag
struct VertOut
{
[location(0)] worldPos: vec3[f32],
[location(1), cond(HasUV)] uv: vec2[f32],
@ -129,21 +129,7 @@ struct FragOut
[builtin(frag_depth), cond(DistanceDepth)] fragdepth: f32,
}
fn LinearizeDepth(depth: f32, zNear: f32, zFar: f32) -> f32
{
return zNear * zFar / (zFar + depth * (zNear - zFar));
}
// http://the-witness.net/news/2013/09/shadow-mapping-summary-part-1/
fn GetSlopeScaledBias(normal: vec3[f32], lightDir: vec3[f32]) -> f32
{
let cosAlpha = clamp(dot(normal, lightDir), 0.0, 1.0);
let sinAlpha = sqrt(1.0 - cosAlpha * cosAlpha); // sin(acos(L*N))
let tanAlpha = sinAlpha / cosAlpha; // tan(acos(L*N))
return tanAlpha;
}
fn ComputeColor(input: VertToFrag) -> vec4[f32]
fn ComputeColor(input: VertOut) -> vec4[f32]
{
let color = settings.BaseColor;
@ -159,115 +145,119 @@ fn ComputeColor(input: VertToFrag) -> vec4[f32]
const if (HasAlphaTexture)
color.w *= MaterialAlphaMap.Sample(input.uv).x;
return color;
}
[entry(frag), cond(!DepthPass)]
fn main(input: VertToFrag) -> FragOut
{
let color = ComputeColor(input);
const if (AlphaTest)
{
if (color.w < settings.AlphaThreshold)
discard;
}
const if (HasLighting)
return color;
}
[cond(HasLighting)]
fn ComputeLighting(color: vec3[f32], input: VertOut) -> vec3[f32]
{
let lightAmbient = vec3[f32](0.0, 0.0, 0.0);
let lightDiffuse = vec3[f32](0.0, 0.0, 0.0);
let lightSpecular = vec3[f32](0.0, 0.0, 0.0);
let eyeVec = normalize(viewerData.eyePosition - input.worldPos);
let normal: vec3[f32];
const if (HasNormalMapping)
{
let lightAmbient = vec3[f32](0.0, 0.0, 0.0);
let lightDiffuse = vec3[f32](0.0, 0.0, 0.0);
let lightSpecular = vec3[f32](0.0, 0.0, 0.0);
let N = normalize(input.normal);
let T = normalize(input.tangent);
let B = cross(N, T);
let tbnMatrix = mat3[f32](T, B, N);
let eyeVec = normalize(viewerData.eyePosition - input.worldPos);
let normal: vec3[f32];
const if (HasNormalMapping)
{
let N = normalize(input.normal);
let T = normalize(input.tangent);
let B = cross(N, T);
let tbnMatrix = mat3[f32](T, B, N);
normal = normalize(tbnMatrix * (MaterialNormalMap.Sample(input.uv).xyz * 2.0 - vec3[f32](1.0, 1.0, 1.0)));
}
else
normal = normalize(input.normal);
for lightIndex in u32(0) -> lightData.directionalLightCount
{
let light = lightData.directionalLights[lightIndex];
let lambert = max(dot(normal, -light.direction), 0.0);
let reflection = reflect(light.direction, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
let shadowFactor = ComputeDirectionalLightShadow(light, shadowMapsDirectional[lightIndex], input.worldPos, lambert, viewerData.viewMatrix);
lightAmbient += shadowFactor * light.color.rgb * light.ambientFactor * settings.AmbientColor.rgb;
lightDiffuse += shadowFactor * lambert * light.color.rgb * light.diffuseFactor;
lightSpecular += shadowFactor * specFactor * light.color.rgb;
}
for lightIndex in u32(0) -> lightData.pointLightCount
{
let light = lightData.pointLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let attenuationFactor = max(1.0 - dist * light.invRadius, 0.0);
let lambert = clamp(dot(normal, -lightToPosNorm), 0.0, 1.0);
let reflection = reflect(lightToPosNorm, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
let shadowFactor = ComputePointLightShadow(light, shadowMapsPoint[lightIndex], dist, lightToPosNorm);
lightAmbient += attenuationFactor * light.color.rgb * light.ambientFactor * settings.AmbientColor.rgb;
lightDiffuse += shadowFactor * attenuationFactor * lambert * light.color.rgb * light.diffuseFactor;
lightSpecular += shadowFactor * attenuationFactor * specFactor * light.color.rgb;
}
for lightIndex in u32(0) -> lightData.spotLightCount
{
let light = lightData.spotLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let curAngle = dot(light.direction, lightToPosNorm);
let innerMinusOuterAngle = light.innerAngle - light.outerAngle;
let attenuationFactor = max(1.0 - dist * light.invRadius, 0.0);
attenuationFactor *= max((curAngle - light.outerAngle) / innerMinusOuterAngle, 0.0);
let lambert = clamp(dot(normal, -lightToPosNorm), 0.0, 1.0);
let reflection = reflect(lightToPosNorm, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
let shadowFactor = ComputeSpotLightShadow(light, shadowMapsSpot[lightIndex], input.worldPos, lambert);
lightAmbient += attenuationFactor * light.color.rgb * light.ambientFactor * settings.AmbientColor.rgb;
lightDiffuse += shadowFactor * attenuationFactor * lambert * light.color.rgb * light.diffuseFactor;
lightSpecular += shadowFactor * attenuationFactor * specFactor * light.color.rgb;
}
lightSpecular *= settings.SpecularColor.rgb;
const if (HasSpecularTexture)
lightSpecular *= MaterialSpecularMap.Sample(input.uv).rgb;
let lightColor = lightAmbient + lightDiffuse + lightSpecular;
color.rgb *= lightColor;
normal = normalize(tbnMatrix * (MaterialNormalMap.Sample(input.uv).xyz * 2.0 - vec3[f32](1.0, 1.0, 1.0)));
}
else
normal = normalize(input.normal);
for lightIndex in u32(0) -> lightData.directionalLightCount
{
let light = lightData.directionalLights[lightIndex];
let lambert = max(dot(normal, -light.direction), 0.0);
let reflection = reflect(light.direction, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
let shadowFactor = ComputeDirectionalLightShadow(light, shadowMapsDirectional[lightIndex], input.worldPos, lambert, viewerData.viewMatrix);
lightAmbient += shadowFactor * light.color.rgb * light.ambientFactor * settings.AmbientColor.rgb;
lightDiffuse += shadowFactor * lambert * light.color.rgb * light.diffuseFactor;
lightSpecular += shadowFactor * specFactor * light.color.rgb;
}
for lightIndex in u32(0) -> lightData.pointLightCount
{
let light = lightData.pointLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let attenuationFactor = max(1.0 - dist * light.invRadius, 0.0);
let lambert = clamp(dot(normal, -lightToPosNorm), 0.0, 1.0);
let reflection = reflect(lightToPosNorm, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
let shadowFactor = ComputePointLightShadow(light, shadowMapsPoint[lightIndex], dist, lightToPosNorm);
lightAmbient += attenuationFactor * light.color.rgb * light.ambientFactor * settings.AmbientColor.rgb;
lightDiffuse += shadowFactor * attenuationFactor * lambert * light.color.rgb * light.diffuseFactor;
lightSpecular += shadowFactor * attenuationFactor * specFactor * light.color.rgb;
}
for lightIndex in u32(0) -> lightData.spotLightCount
{
let light = lightData.spotLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let curAngle = dot(light.direction, lightToPosNorm);
let innerMinusOuterAngle = light.innerAngle - light.outerAngle;
let attenuationFactor = max(1.0 - dist * light.invRadius, 0.0);
attenuationFactor *= max((curAngle - light.outerAngle) / innerMinusOuterAngle, 0.0);
let lambert = clamp(dot(normal, -lightToPosNorm), 0.0, 1.0);
let reflection = reflect(lightToPosNorm, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
let shadowFactor = ComputeSpotLightShadow(light, shadowMapsSpot[lightIndex], input.worldPos, lambert);
lightAmbient += attenuationFactor * light.color.rgb * light.ambientFactor * settings.AmbientColor.rgb;
lightDiffuse += shadowFactor * attenuationFactor * lambert * light.color.rgb * light.diffuseFactor;
lightSpecular += shadowFactor * attenuationFactor * specFactor * light.color.rgb;
}
lightSpecular *= settings.SpecularColor.rgb;
const if (HasSpecularTexture)
lightSpecular *= MaterialSpecularMap.Sample(input.uv).rgb;
let lightColor = lightAmbient + lightDiffuse + lightSpecular;
return color * lightColor;
}
[entry(frag), cond(!DepthPass)]
fn FragMain(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
const if (HasLighting)
color.rgb = ComputeLighting(color.rgb, input);
let output: FragOut;
output.RenderTarget0 = color;
@ -278,14 +268,9 @@ fn main(input: VertToFrag) -> FragOut
// Shadow passes entries
[entry(frag), cond(DepthPass && DistanceDepth)]
[depth_write(replace)]
fn main(input: VertToFrag) -> FragOut
fn FragDepthDist(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
const if (AlphaTest)
{
if (color.w < settings.AlphaThreshold)
discard;
}
let output: FragOut;
output.RenderTarget0 = color;
@ -297,11 +282,9 @@ fn main(input: VertToFrag) -> FragOut
}
[entry(frag), cond(DepthPass && AlphaTest && !DistanceDepth)]
fn main(input: VertToFrag) -> FragOut
fn FragDepth(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
if (color.w < settings.AlphaThreshold)
discard;
let output: FragOut;
output.RenderTarget0 = color;
@ -309,7 +292,7 @@ fn main(input: VertToFrag) -> FragOut
}
[entry(frag), cond(DepthPass && !AlphaTest && !DistanceDepth)]
fn main() {} //< dummy
fn FragDepthNoAlpha() {} //< dummy
// Vertex stage
struct VertIn
@ -346,7 +329,7 @@ struct VertIn
}
[entry(vert), cond(Billboard)]
fn billboardMain(input: VertIn) -> VertToFrag
fn billboardMain(input: VertIn) -> VertOut
{
let size = input.billboardSizeRot.xy;
let sinCos = input.billboardSizeRot.zw;
@ -364,7 +347,7 @@ fn billboardMain(input: VertIn) -> VertToFrag
vertexPos += cameraRight * rotatedPosition.x;
vertexPos += cameraUp * rotatedPosition.y;
let output: VertToFrag;
let output: VertOut;
output.position = viewerData.viewProjMatrix * instanceData.worldMatrix * vec4[f32](vertexPos, 1.0);
const if (HasColor)
@ -377,7 +360,7 @@ fn billboardMain(input: VertIn) -> VertToFrag
}
[entry(vert), cond(!Billboard)]
fn main(input: VertIn) -> VertToFrag
fn main(input: VertIn) -> VertOut
{
let pos: vec3[f32];
const if (HasNormal) let normal: vec3[f32];
@ -419,7 +402,7 @@ fn main(input: VertIn) -> VertToFrag
let worldPosition = instanceData.worldMatrix * vec4[f32](pos, 1.0);
let output: VertToFrag;
let output: VertOut;
output.worldPos = worldPosition.xyz;
output.position = viewerData.viewProjMatrix * worldPosition;

View File

@ -104,7 +104,8 @@ external
[tag("ShadowMapsSpot")] shadowMapsSpot: array[depth_sampler2D[f32], MaxLightCount],
}
struct VertToFrag
[export]
struct VertOut
{
[location(0)] worldPos: vec3[f32],
[location(1), cond(HasUV)] uv: vec2[f32],
@ -124,7 +125,8 @@ struct FragOut
[builtin(frag_depth), cond(DistanceDepth)] fragdepth: f32,
}
fn ComputeColor(input: VertToFrag) -> vec4[f32]
[export]
fn ComputeColor(input: VertOut) -> vec4[f32]
{
let color = settings.BaseColor;
@ -140,136 +142,132 @@ fn ComputeColor(input: VertToFrag) -> vec4[f32]
const if (HasAlphaTexture)
color.w *= MaterialAlphaMap.Sample(input.uv).x;
return color;
}
[entry(frag), cond(!DepthPass)]
fn main(input: VertToFrag) -> FragOut
{
let color = ComputeColor(input);
const if (AlphaTest)
{
if (color.w < settings.AlphaThreshold)
discard;
}
const if (HasNormal && !DepthPass)
return color;
}
[export, cond(HasNormal)]
fn ComputeLighting(color: vec3[f32], input: VertOut) -> vec3[f32]
{
let lightRadiance = vec3[f32](0.0, 0.0, 0.0);
let eyeVec = normalize(viewerData.eyePosition - input.worldPos);
let normal: vec3[f32];
const if (HasNormalMapping)
{
let lightRadiance = vec3[f32](0.0, 0.0, 0.0);
let N = normalize(input.normal);
let T = normalize(input.tangent);
let B = cross(N, T);
let tbnMatrix = mat3[f32](T, B, N);
let eyeVec = normalize(viewerData.eyePosition - input.worldPos);
let normal: vec3[f32];
const if (HasNormalMapping)
{
let N = normalize(input.normal);
let T = normalize(input.tangent);
let B = cross(N, T);
let tbnMatrix = mat3[f32](T, B, N);
normal = normalize(tbnMatrix * (MaterialNormalMap.Sample(input.uv).xyz * 2.0 - vec3[f32](1.0, 1.0, 1.0)));
}
else
normal = normalize(input.normal);
let albedo = color.xyz;
let metallic: f32;
let roughness: f32;
const if (HasMetallicTexture)
metallic = MaterialMetallicMap.Sample(input.uv).x;
else
metallic = 0.0;
const if (HasRoughnessTexture)
roughness = MaterialRoughnessMap.Sample(input.uv).x;
else
roughness = 0.8;
let F0 = vec3[f32](0.04, 0.04, 0.04);
F0 = albedo * metallic + F0 * (1.0 - metallic);
let albedoFactor = albedo / Pi;
for lightIndex in u32(0) -> lightData.directionalLightCount
{
let light = lightData.directionalLights[lightIndex];
let lambert = max(dot(normal, -light.direction), 0.0);
let shadowFactor = ComputeDirectionalLightShadow(light, shadowMapsDirectional[lightIndex], input.worldPos, lambert, viewerData.viewMatrix);
let radiance = ComputeLightRadiance(light.color.rgb, -light.direction, 1.0, albedoFactor, eyeVec, F0, normal, metallic, roughness);
lightRadiance += shadowFactor * radiance;
}
for lightIndex in u32(0) -> lightData.pointLightCount
{
let light = lightData.pointLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let attenuation = max(1.0 - dist * light.invRadius, 0.0);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let shadowFactor = ComputePointLightShadow(light, shadowMapsPoint[lightIndex], dist, lightToPosNorm);
let radiance = ComputeLightRadiance(light.color.rgb, lightToPosNorm, attenuation, albedoFactor, eyeVec, F0, normal, metallic, roughness);
lightRadiance += shadowFactor * radiance;
}
for lightIndex in u32(0) -> lightData.spotLightCount
{
let light = lightData.spotLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let curAngle = dot(light.direction, lightToPosNorm);
let innerMinusOuterAngle = light.innerAngle - light.outerAngle;
let attenuation = max(1.0 - dist * light.invRadius, 0.0);
attenuation *= max((curAngle - light.outerAngle) / innerMinusOuterAngle, 0.0);
let lambert = clamp(dot(normal, -lightToPosNorm), 0.0, 1.0);
let shadowFactor = ComputeSpotLightShadow(light, shadowMapsSpot[lightIndex], input.worldPos, lambert);
let radiance = ComputeLightRadiance(light.color.rgb, lightToPosNorm, attenuation, albedoFactor, eyeVec, F0, normal, metallic, roughness);
lightRadiance += shadowFactor * radiance;
}
let ambient = (0.0001).rrr * albedo;
let color = ambient + lightRadiance * color.rgb;
color = color / (color + vec3[f32](1.0, 1.0, 1.0));
color = pow(color, (1.0 / 2.2).xxx);
let output: FragOut;
output.RenderTarget0 = vec4[f32](color, 1.0);
return output;
normal = normalize(tbnMatrix * (MaterialNormalMap.Sample(input.uv).xyz * 2.0 - vec3[f32](1.0, 1.0, 1.0)));
}
else
normal = normalize(input.normal);
let albedo = color.xyz;
let metallic: f32;
let roughness: f32;
const if (HasMetallicTexture)
metallic = MaterialMetallicMap.Sample(input.uv).x;
else
metallic = 0.0;
const if (HasRoughnessTexture)
roughness = MaterialRoughnessMap.Sample(input.uv).x;
else
roughness = 0.8;
let F0 = vec3[f32](0.04, 0.04, 0.04);
F0 = albedo * metallic + F0 * (1.0 - metallic);
let albedoFactor = albedo / Pi;
for lightIndex in u32(0) -> lightData.directionalLightCount
{
let output: FragOut;
output.RenderTarget0 = color;
return output;
let light = lightData.directionalLights[lightIndex];
let lambert = max(dot(normal, -light.direction), 0.0);
let shadowFactor = ComputeDirectionalLightShadow(light, shadowMapsDirectional[lightIndex], input.worldPos, lambert, viewerData.viewMatrix);
let radiance = ComputeLightRadiance(light.color.rgb, -light.direction, 1.0, albedoFactor, eyeVec, F0, normal, metallic, roughness);
lightRadiance += shadowFactor * radiance;
}
for lightIndex in u32(0) -> lightData.pointLightCount
{
let light = lightData.pointLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let attenuation = max(1.0 - dist * light.invRadius, 0.0);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let shadowFactor = ComputePointLightShadow(light, shadowMapsPoint[lightIndex], dist, lightToPosNorm);
let radiance = ComputeLightRadiance(light.color.rgb, lightToPosNorm, attenuation, albedoFactor, eyeVec, F0, normal, metallic, roughness);
lightRadiance += shadowFactor * radiance;
}
for lightIndex in u32(0) -> lightData.spotLightCount
{
let light = lightData.spotLights[lightIndex];
let lightToPos = input.worldPos - light.position;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let curAngle = dot(light.direction, lightToPosNorm);
let innerMinusOuterAngle = light.innerAngle - light.outerAngle;
let attenuation = max(1.0 - dist * light.invRadius, 0.0);
attenuation *= max((curAngle - light.outerAngle) / innerMinusOuterAngle, 0.0);
let lambert = clamp(dot(normal, -lightToPosNorm), 0.0, 1.0);
let shadowFactor = ComputeSpotLightShadow(light, shadowMapsSpot[lightIndex], input.worldPos, lambert);
let radiance = ComputeLightRadiance(light.color.rgb, lightToPosNorm, attenuation, albedoFactor, eyeVec, F0, normal, metallic, roughness);
lightRadiance += shadowFactor * radiance;
}
let ambient = (0.0001).rrr * albedo;
let finalColor = ambient + lightRadiance * color;
finalColor = finalColor / (finalColor + vec3[f32](1.0, 1.0, 1.0));
finalColor = pow(finalColor, (1.0 / 2.2).xxx); //< WTF?
return finalColor;
}
[export, entry(frag), cond(!DepthPass)]
fn FragMain(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
const if (HasNormal)
color.rgb = ComputeLighting(color.rgb, input);
let output: FragOut;
output.RenderTarget0 = color;
return output;
}
// Shadow passes entries
[entry(frag), cond(DepthPass && DistanceDepth)]
[depth_write(replace)]
fn main(input: VertToFrag) -> FragOut
fn FragDepthDist(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
const if (AlphaTest)
{
if (color.w < settings.AlphaThreshold)
discard;
}
let output: FragOut;
output.RenderTarget0 = color;
@ -281,11 +279,9 @@ fn main(input: VertToFrag) -> FragOut
}
[entry(frag), cond(DepthPass && AlphaTest && !DistanceDepth)]
fn main(input: VertToFrag) -> FragOut
fn FragDepth(input: VertOut) -> FragOut
{
let color = ComputeColor(input);
if (color.w < settings.AlphaThreshold)
discard;
let output: FragOut;
output.RenderTarget0 = color;
@ -293,7 +289,7 @@ fn main(input: VertToFrag) -> FragOut
}
[entry(frag), cond(DepthPass && !AlphaTest && !DistanceDepth)]
fn main() {} //< dummy
fn FragDepthNoAlpha() {} //< dummy
// Vertex stage
struct VertIn
@ -330,7 +326,7 @@ struct VertIn
}
[entry(vert), cond(Billboard)]
fn billboardMain(input: VertIn) -> VertToFrag
fn VertBillboard(input: VertIn) -> VertOut
{
let size = input.billboardSizeRot.xy;
let sinCos = input.billboardSizeRot.zw;
@ -348,12 +344,12 @@ fn billboardMain(input: VertIn) -> VertToFrag
vertexPos += cameraRight * rotatedPosition.x;
vertexPos += cameraUp * rotatedPosition.y;
let output: VertToFrag;
let output: VertOut;
output.position = viewerData.viewProjMatrix * instanceData.worldMatrix * vec4[f32](vertexPos, 1.0);
const if (HasColor)
output.color = input.billboardColor;
const if (HasUV)
output.uv = input.pos.xy + vec2[f32](0.5, 0.5);
@ -361,7 +357,7 @@ fn billboardMain(input: VertIn) -> VertToFrag
}
[entry(vert), cond(!Billboard)]
fn main(input: VertIn) -> VertToFrag
fn VertMain(input: VertIn) -> VertOut
{
let pos: vec3[f32];
const if (HasNormal) let normal: vec3[f32];
@ -403,7 +399,7 @@ fn main(input: VertIn) -> VertToFrag
let worldPosition = instanceData.worldMatrix * vec4[f32](pos, 1.0);
let output: VertToFrag;
let output: VertOut;
output.worldPos = worldPosition.xyz;
output.position = viewerData.viewProjMatrix * worldPosition;

View File

@ -170,9 +170,11 @@ namespace Nz
m_states = states;
m_states.sanitized = true; //< Shader is always sanitized (because of keywords)
#ifdef NAZARA_PLATFORM_WEB
m_states.optimize = true; //< Always remove unused code with emscripten (prevents errors on draw calls when no buffer is bound on a unused binding)
#endif
/*
Always remove dead code with OpenGL (prevents errors on draw calls when no buffer is bound on a unused binding),
also prevents compilation failure because of functions using discard in a vertex shader
*/
m_states.optimize = true;
nzsl::Ast::SanitizeVisitor::Options options = nzsl::GlslWriter::GetSanitizeOptions();
options.optionValues = states.optionValues;