Added new abstract renderqueue rendering

Former-commit-id: 35e66174ccc3de3b43571f12a149e6d3c59cc2c9
This commit is contained in:
Lynix 2014-05-28 01:00:18 +02:00
parent d09f6def2b
commit c901b5808e
7 changed files with 407 additions and 518 deletions

View File

@ -9,14 +9,15 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Core/NonCopyable.hpp>
#include <Nazara/Math/Box.hpp>
#include <Nazara/Math/Matrix4.hpp>
#include <Nazara/Utility/Enums.hpp>
class NzDrawable;
class NzLight;
class NzMaterial;
class NzModel;
class NzSprite;
class NzSubMesh;
struct NzMeshData;
class NAZARA_API NzAbstractRenderQueue : NzNonCopyable
{
@ -26,8 +27,8 @@ class NAZARA_API NzAbstractRenderQueue : NzNonCopyable
virtual void AddDrawable(const NzDrawable* drawable) = 0;
virtual void AddLight(const NzLight* light) = 0;
virtual void AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix) = 0;
virtual void AddSprite(const NzSprite* sprite) = 0;
virtual void AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix) = 0;
virtual void Clear(bool fully) = 0;
};

View File

@ -13,6 +13,7 @@
#include <Nazara/Graphics/AbstractRenderQueue.hpp>
#include <Nazara/Math/Box.hpp>
#include <Nazara/Math/Matrix4.hpp>
#include <Nazara/Utility/MeshData.hpp>
#include <map>
#include <tuple>
@ -29,22 +30,11 @@ class NAZARA_API NzDeferredRenderQueue : public NzAbstractRenderQueue, NzResourc
void AddDrawable(const NzDrawable* drawable) override;
void AddLight(const NzLight* light) override;
void AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix) override;
void AddSprite(const NzSprite* sprite) override;
void AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix) override;
void Clear(bool fully);
struct SkeletalData
{
///TODO
NzMatrix4f transformMatrix;
};
struct StaticData
{
NzMatrix4f transformMatrix;
};
struct BatchedModelMaterialComparator
{
bool operator()(const NzMaterial* mat1, const NzMaterial* mat2);
@ -55,23 +45,17 @@ class NAZARA_API NzDeferredRenderQueue : public NzAbstractRenderQueue, NzResourc
bool operator()(const NzMaterial* mat1, const NzMaterial* mat2);
};
struct BatchedSkeletalMeshComparator
struct MeshDataComparator
{
bool operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2);
bool operator()(const NzMeshData& data1, const NzMeshData& data2);
};
struct BatchedStaticMeshComparator
{
bool operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2);
};
typedef std::map<const NzSkeletalMesh*, std::vector<SkeletalData>, BatchedSkeletalMeshComparator> BatchedSkeletalMeshContainer;
typedef std::map<const NzStaticMesh*, std::vector<StaticData>, BatchedStaticMeshComparator> BatchedStaticMeshContainer;
typedef std::map<const NzMaterial*, std::tuple<bool, bool, BatchedSkeletalMeshContainer, BatchedStaticMeshContainer>, BatchedModelMaterialComparator> BatchedModelContainer;
typedef std::map<NzMeshData, std::vector<NzMatrix4f>, MeshDataComparator> MeshInstanceContainer;
typedef std::map<const NzMaterial*, std::tuple<bool, bool, MeshInstanceContainer>, BatchedModelMaterialComparator> ModelBatches;
typedef std::map<const NzMaterial*, std::vector<const NzSprite*>> BatchedSpriteContainer;
typedef std::vector<const NzLight*> LightContainer;
BatchedModelContainer opaqueModels;
ModelBatches opaqueModels;
BatchedSpriteContainer sprites;
LightContainer directionalLights;
LightContainer pointLights;

View File

@ -13,6 +13,7 @@
#include <Nazara/Graphics/AbstractRenderQueue.hpp>
#include <Nazara/Math/Box.hpp>
#include <Nazara/Math/Matrix4.hpp>
#include <Nazara/Utility/MeshData.hpp>
#include <map>
#include <tuple>
@ -31,8 +32,8 @@ class NAZARA_API NzForwardRenderQueue : public NzAbstractRenderQueue, NzResource
void AddDrawable(const NzDrawable* drawable) override;
void AddLight(const NzLight* light) override;
void AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix) override;
void AddSprite(const NzSprite* sprite) override;
void AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix) override;
void Clear(bool fully);
@ -42,35 +43,14 @@ class NAZARA_API NzForwardRenderQueue : public NzAbstractRenderQueue, NzResource
bool OnResourceDestroy(const NzResource* resource, int index) override;
void OnResourceReleased(const NzResource* resource, int index) override;
struct SkeletalData
{
///TODO
NzMatrix4f transformMatrix;
};
struct StaticData
{
NzMatrix4f transformMatrix;
};
struct TransparentModel
struct TransparentModelData
{
NzMatrix4f transformMatrix;
NzMeshData meshData;
NzSpheref boundingSphere;
const NzMaterial* material;
};
struct TransparentSkeletalModel : public TransparentModel
{
///TODO
};
struct TransparentStaticModel : public TransparentModel
{
const NzStaticMesh* mesh;
};
struct BatchedModelMaterialComparator
{
bool operator()(const NzMaterial* mat1, const NzMaterial* mat2);
@ -81,28 +61,21 @@ class NAZARA_API NzForwardRenderQueue : public NzAbstractRenderQueue, NzResource
bool operator()(const NzMaterial* mat1, const NzMaterial* mat2);
};
struct BatchedSkeletalMeshComparator
struct MeshDataComparator
{
bool operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2);
bool operator()(const NzMeshData& data1, const NzMeshData& data2);
};
struct BatchedStaticMeshComparator
{
bool operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2);
};
typedef std::map<const NzSkeletalMesh*, std::vector<SkeletalData>, BatchedSkeletalMeshComparator> BatchedSkeletalMeshContainer;
typedef std::map<const NzStaticMesh*, std::pair<NzSpheref, std::vector<StaticData>>, BatchedStaticMeshComparator> BatchedStaticMeshContainer;
typedef std::map<const NzMaterial*, std::tuple<bool, bool, BatchedSkeletalMeshContainer, BatchedStaticMeshContainer>, BatchedModelMaterialComparator> BatchedModelContainer;
typedef std::map<NzMeshData, std::pair<NzSpheref, std::vector<NzMatrix4f>>, MeshDataComparator> MeshInstanceContainer;
typedef std::map<const NzMaterial*, std::tuple<bool, bool, MeshInstanceContainer>, BatchedModelMaterialComparator> ModelBatches;
typedef std::map<const NzMaterial*, std::vector<const NzSprite*>> BatchedSpriteContainer;
typedef std::vector<const NzLight*> LightContainer;
typedef std::vector<std::pair<unsigned int, bool>> TransparentModelContainer;
typedef std::vector<unsigned int> TransparentModelContainer;
BatchedModelContainer opaqueModels;
ModelBatches opaqueModels;
BatchedSpriteContainer sprites;
TransparentModelContainer transparentsModels;
std::vector<TransparentSkeletalModel> transparentSkeletalModels;
std::vector<TransparentStaticModel> transparentStaticModels;
TransparentModelContainer transparentModels;
std::vector<TransparentModelData> transparentModelData;
std::vector<const NzDrawable*> otherDrawables;
LightContainer directionalLights;
LightContainer lights;

View File

@ -58,10 +58,9 @@ bool NzDeferredGeometryPass::Process(const NzScene* scene, unsigned int firstWor
if (used)
{
bool& renderQueueInstancing = std::get<1>(matIt.second);
NzDeferredRenderQueue::BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second);
NzDeferredRenderQueue::BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second);
NzDeferredRenderQueue::MeshInstanceContainer& meshInstances = std::get<2>(matIt.second);
if (!skeletalContainer.empty() || !staticContainer.empty())
if (!meshInstances.empty())
{
const NzMaterial* material = matIt.first;
@ -88,26 +87,16 @@ bool NzDeferredGeometryPass::Process(const NzScene* scene, unsigned int firstWor
lastShader = shader;
}
// Meshs squelettiques
/*if (!skeletalContainer.empty())
// Meshes
for (auto& meshIt : meshInstances)
{
NzRenderer::SetVertexBuffer(m_skinningBuffer); // Vertex buffer commun
for (auto& subMeshIt : container)
{
///TODO
}
}*/
const NzMeshData& meshData = meshIt.first;
std::vector<NzMatrix4f>& instances = meshIt.second;
// Meshs statiques
for (auto& subMeshIt : staticContainer)
{
const NzStaticMesh* mesh = subMeshIt.first;
std::vector<NzDeferredRenderQueue::StaticData>& staticData = subMeshIt.second;
if (!staticData.empty())
if (!instances.empty())
{
const NzIndexBuffer* indexBuffer = mesh->GetIndexBuffer();
const NzVertexBuffer* vertexBuffer = mesh->GetVertexBuffer();
const NzIndexBuffer* indexBuffer = meshData.indexBuffer;
const NzVertexBuffer* vertexBuffer = meshData.vertexBuffer;
// Gestion du draw call avant la boucle de rendu
std::function<void(nzPrimitiveMode, unsigned int, unsigned int)> DrawFunc;
@ -130,49 +119,43 @@ bool NzDeferredGeometryPass::Process(const NzScene* scene, unsigned int firstWor
NzRenderer::SetIndexBuffer(indexBuffer);
NzRenderer::SetVertexBuffer(vertexBuffer);
nzPrimitiveMode primitiveMode = mesh->GetPrimitiveMode();
if (useInstancing)
{
// On récupère le buffer d'instancing du Renderer et on le configure pour fonctionner avec des matrices
NzVertexBuffer* instanceBuffer = NzRenderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(NzVertexDeclaration::Get(nzVertexLayout_Matrix4));
unsigned int stride = instanceBuffer->GetStride();
const NzDeferredRenderQueue::StaticData* data = &staticData[0];
unsigned int instanceCount = staticData.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Le nombre de sommets maximum avec la déclaration donnée plus hautg
const NzMatrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Le nombre de matrices que peut contenir le buffer
while (instanceCount > 0)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
NzBufferMapper<NzVertexBuffer> mapper(instanceBuffer, nzBufferAccess_DiscardAndWrite, 0, renderedInstanceCount);
nzUInt8* ptr = reinterpret_cast<nzUInt8*>(mapper.GetPointer());
// On remplit l'instancing buffer avec nos matrices world
instanceBuffer->Fill(instanceMatrices, 0, renderedInstanceCount, true);
instanceMatrices += renderedInstanceCount;
for (unsigned int i = 0; i < renderedInstanceCount; ++i)
{
std::memcpy(ptr, data->transformMatrix, sizeof(float)*16);
data++;
ptr += stride;
}
mapper.Unmap();
InstancedDrawFunc(renderedInstanceCount, primitiveMode, 0, indexCount);
// Et on affiche
InstancedDrawFunc(renderedInstanceCount, meshData.primitiveMode, 0, indexCount);
}
}
else
{
for (const NzDeferredRenderQueue::StaticData& data : staticData)
// Sans instancing, on doit effectuer un drawcall pour chaque instance
// Cela reste néanmoins plus rapide que l'instancing en dessous d'un certain nombre d'instances
// À cause du temps de modification du buffer d'instancing
for (const NzMatrix4f& matrix : instances)
{
NzRenderer::SetMatrix(nzMatrixType_World, data.transformMatrix);
DrawFunc(primitiveMode, 0, indexCount);
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
DrawFunc(meshData.primitiveMode, 0, indexCount);
}
}
staticData.clear();
instances.clear();
}
}
}

View File

@ -9,17 +9,15 @@
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Graphics/Debug.hpp>
namespace
{
enum ResourceType
{
ResourceType_IndexBuffer,
ResourceType_Material,
ResourceType_SkeletalMesh,
ResourceType_StaticMesh
ResourceType_VertexBuffer
};
}
@ -66,6 +64,45 @@ void NzDeferredRenderQueue::AddLight(const NzLight* light)
m_forwardQueue->AddLight(light);
}
void NzDeferredRenderQueue::AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix)
{
if (material->IsEnabled(nzRendererParameter_Blend))
m_forwardQueue->AddMesh(material, meshData, meshAABB, transformMatrix);
else
{
ModelBatches::iterator it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
it = opaqueModels.insert(std::make_pair(material, ModelBatches::mapped_type())).first;
material->AddResourceListener(this, ResourceType_Material);
}
bool& used = std::get<0>(it->second);
bool& enableInstancing = std::get<1>(it->second);
MeshInstanceContainer& meshMap = std::get<2>(it->second);
used = true;
MeshInstanceContainer::iterator it2 = meshMap.find(meshData);
if (it2 == meshMap.end())
{
it2 = meshMap.insert(std::make_pair(meshData, MeshInstanceContainer::mapped_type())).first;
if (meshData.indexBuffer)
meshData.indexBuffer->AddResourceListener(this, ResourceType_IndexBuffer);
meshData.vertexBuffer->AddResourceListener(this, ResourceType_VertexBuffer);
}
std::vector<NzMatrix4f>& instances = it2->second;
instances.push_back(transformMatrix);
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instances.size() >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
}
}
void NzDeferredRenderQueue::AddSprite(const NzSprite* sprite)
{
#if NAZARA_GRAPHICS_SAFE
@ -91,75 +128,6 @@ void NzDeferredRenderQueue::AddSprite(const NzSprite* sprite)
m_forwardQueue->AddSprite(sprite);
}
void NzDeferredRenderQueue::AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix)
{
switch (subMesh->GetAnimationType())
{
case nzAnimationType_Skeletal:
{
///TODO
/*
** Il y a ici deux choses importantes à gérer:
** -Pour commencer, la mise en cache de std::vector suffisamment grands pour contenir le résultat du skinning
** l'objectif ici est d'éviter une allocation à chaque frame, donc de réutiliser un tableau existant
** Note: Il faudrait évaluer aussi la possibilité de conserver le buffer d'une frame à l'autre.
** Ceci permettant de ne pas skinner inutilement ce qui ne bouge pas, ou de skinner partiellement un mesh.
** Il faut cependant voir stocker ce set de buffers, qui doit être communs à toutes les RQ d'une même scène.
**
** -Ensuite, la possibilité de regrouper les modèles skinnés identiques, une centaine de soldats marchant au pas
** ne devrait requérir qu'un skinning.
*/
NazaraError("Skeletal mesh not supported yet, sorry");
break;
}
case nzAnimationType_Static:
{
if (material->IsEnabled(nzRendererParameter_Blend))
m_forwardQueue->AddSubMesh(material, subMesh, transformMatrix);
else
{
const NzStaticMesh* staticMesh = static_cast<const NzStaticMesh*>(subMesh);
auto it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
it = opaqueModels.insert(std::make_pair(material, BatchedModelContainer::mapped_type())).first;
material->AddResourceListener(this, ResourceType_Material);
}
bool& used = std::get<0>(it->second);
bool& enableInstancing = std::get<1>(it->second);
used = true;
auto& meshMap = std::get<3>(it->second);
auto it2 = meshMap.find(staticMesh);
if (it2 == meshMap.end())
{
it2 = meshMap.insert(std::make_pair(staticMesh, BatchedStaticMeshContainer::mapped_type())).first;
staticMesh->AddResourceListener(this, ResourceType_StaticMesh);
}
std::vector<StaticData>& staticDataContainer = it2->second;
unsigned int instanceCount = staticDataContainer.size() + 1;
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instanceCount >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
staticDataContainer.resize(instanceCount);
StaticData& data = staticDataContainer.back();
data.transformMatrix = transformMatrix;
}
break;
}
}
}
void NzDeferredRenderQueue::Clear(bool fully)
{
directionalLights.clear();
@ -173,18 +141,15 @@ void NzDeferredRenderQueue::Clear(bool fully)
const NzMaterial* material = matIt.first;
material->RemoveResourceListener(this);
BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second);
for (auto& meshIt : skeletalContainer)
MeshInstanceContainer& instances = std::get<2>(matIt.second);
for (auto& instanceIt : instances)
{
const NzSkeletalMesh* skeletalMesh = meshIt.first;
skeletalMesh->RemoveResourceListener(this);
}
const NzMeshData& renderData = instanceIt.first;
BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second);
for (auto& meshIt : staticContainer)
{
const NzStaticMesh* staticMesh = meshIt.first;
staticMesh->RemoveResourceListener(this);
if (renderData.indexBuffer)
renderData.indexBuffer->RemoveResourceListener(this);
renderData.vertexBuffer->RemoveResourceListener(this);
}
}
@ -199,23 +164,41 @@ bool NzDeferredRenderQueue::OnResourceDestroy(const NzResource* resource, int in
{
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
opaqueModels.erase(static_cast<const NzMaterial*>(resource));
break;
case ResourceType_SkeletalMesh:
case ResourceType_VertexBuffer:
{
for (auto& pair : opaqueModels)
std::get<2>(pair.second).erase(static_cast<const NzSkeletalMesh*>(resource));
break;
}
case ResourceType_StaticMesh:
{
for (auto& pair : opaqueModels)
std::get<3>(pair.second).erase(static_cast<const NzStaticMesh*>(resource));
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
@ -225,7 +208,58 @@ bool NzDeferredRenderQueue::OnResourceDestroy(const NzResource* resource, int in
void NzDeferredRenderQueue::OnResourceReleased(const NzResource* resource, int index)
{
OnResourceDestroy(resource, index);
// La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche
// des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources)
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it)
{
if (it->first == resource)
{
opaqueModels.erase(it);
break;
}
}
break;
}
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
}
bool NzDeferredRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
@ -237,7 +271,6 @@ bool NzDeferredRenderQueue::BatchedModelMaterialComparator::operator()(const NzM
const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
@ -258,7 +291,6 @@ bool NzDeferredRenderQueue::BatchedSpriteMaterialComparator::operator()(const Nz
const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
@ -270,38 +302,20 @@ bool NzDeferredRenderQueue::BatchedSpriteMaterialComparator::operator()(const Nz
return mat1 < mat2;
}
bool NzDeferredRenderQueue::BatchedSkeletalMeshComparator::operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2)
bool NzDeferredRenderQueue::MeshDataComparator::operator()(const NzMeshData& data1, const NzMeshData& data2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzBuffer* buffer1;
const NzBuffer* buffer2;
const NzIndexBuffer* iBuffer2 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer2 < buffer2;
}
bool NzDeferredRenderQueue::BatchedStaticMeshComparator::operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzIndexBuffer* iBuffer2 = subMesh2->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
{
buffer1 = subMesh1->GetVertexBuffer()->GetBuffer();
buffer2 = subMesh2->GetVertexBuffer()->GetBuffer();
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer1 < buffer2;
}
else
buffer1 = (data1.indexBuffer) ? data1.indexBuffer->GetBuffer() : nullptr;
buffer2 = (data2.indexBuffer) ? data2.indexBuffer->GetBuffer() : nullptr;
if (buffer1 != buffer2)
return buffer1 < buffer2;
buffer1 = data1.vertexBuffer->GetBuffer();
buffer2 = data2.vertexBuffer->GetBuffer();
if (buffer1 != buffer2)
return buffer1 < buffer2;
return data1.primitiveMode < data2.primitiveMode;
}

View File

@ -16,9 +16,9 @@ namespace
{
enum ResourceType
{
ResourceType_IndexBuffer,
ResourceType_Material,
ResourceType_SkeletalMesh,
ResourceType_StaticMesh
ResourceType_VertexBuffer
};
}
@ -68,6 +68,59 @@ void NzForwardRenderQueue::AddLight(const NzLight* light)
}
}
void NzForwardRenderQueue::AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix)
{
if (material->IsEnabled(nzRendererParameter_Blend))
{
unsigned int index = transparentModelData.size();
transparentModelData.resize(index+1);
TransparentModelData& data = transparentModelData.back();
data.boundingSphere = NzSpheref(transformMatrix.GetTranslation() + meshAABB.GetCenter(), meshAABB.GetSquaredRadius());
data.material = material;
data.meshData = meshData;
data.transformMatrix = transformMatrix;
transparentModels.push_back(index);
}
else
{
ModelBatches::iterator it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
it = opaqueModels.insert(std::make_pair(material, ModelBatches::mapped_type())).first;
material->AddResourceListener(this, ResourceType_Material);
}
bool& used = std::get<0>(it->second);
bool& enableInstancing = std::get<1>(it->second);
MeshInstanceContainer& meshMap = std::get<2>(it->second);
used = true;
MeshInstanceContainer::iterator it2 = meshMap.find(meshData);
if (it2 == meshMap.end())
{
it2 = meshMap.insert(std::make_pair(meshData, MeshInstanceContainer::mapped_type())).first;
NzSpheref& squaredBoundingSphere = it2->second.first;
squaredBoundingSphere.Set(meshAABB.GetSquaredBoundingSphere());
if (meshData.indexBuffer)
meshData.indexBuffer->AddResourceListener(this, ResourceType_IndexBuffer);
meshData.vertexBuffer->AddResourceListener(this, ResourceType_VertexBuffer);
}
std::vector<NzMatrix4f>& instances = it2->second.second;
instances.push_back(transformMatrix);
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instances.size() >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
}
}
void NzForwardRenderQueue::AddSprite(const NzSprite* sprite)
{
#if NAZARA_GRAPHICS_SAFE
@ -87,100 +140,13 @@ void NzForwardRenderQueue::AddSprite(const NzSprite* sprite)
sprites[sprite->GetMaterial()].push_back(sprite);
}
void NzForwardRenderQueue::AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix)
{
switch (subMesh->GetAnimationType())
{
case nzAnimationType_Skeletal:
{
///TODO
/*
** Il y a ici deux choses importantes à gérer:
** -Pour commencer, la mise en cache de std::vector suffisamment grands pour contenir le résultat du skinning
** l'objectif ici est d'éviter une allocation à chaque frame, donc de réutiliser un tableau existant
** Note: Il faudrait évaluer aussi la possibilité de conserver le buffer d'une frame à l'autre.
** Ceci permettant de ne pas skinner inutilement ce qui ne bouge pas, ou de skinner partiellement un mesh.
** Il faut cependant voir stocker ce set de buffers, qui doit être communs à toutes les RQ d'une même scène.
**
** -Ensuite, la possibilité de regrouper les modèles skinnés identiques, une centaine de soldats marchant au pas
** ne devrait requérir qu'un skinning.
*/
NazaraError("Skeletal mesh not supported yet, sorry");
break;
}
case nzAnimationType_Static:
{
const NzStaticMesh* staticMesh = static_cast<const NzStaticMesh*>(subMesh);
if (material->IsEnabled(nzRendererParameter_Blend))
{
unsigned int index = transparentStaticModels.size();
transparentStaticModels.resize(index+1);
const NzBoxf& aabb = staticMesh->GetAABB();
TransparentStaticModel& data = transparentStaticModels.back();
data.boundingSphere = NzSpheref(transformMatrix.GetTranslation() + aabb.GetCenter(), aabb.GetSquaredRadius());
data.material = material;
data.mesh = staticMesh;
data.transformMatrix = transformMatrix;
transparentsModels.push_back(std::make_pair(index, true));
}
else
{
auto it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
it = opaqueModels.insert(std::make_pair(material, BatchedModelContainer::mapped_type())).first;
material->AddResourceListener(this, ResourceType_Material);
}
bool& used = std::get<0>(it->second);
bool& enableInstancing = std::get<1>(it->second);
used = true;
auto& meshMap = std::get<3>(it->second);
auto it2 = meshMap.find(staticMesh);
if (it2 == meshMap.end())
{
it2 = meshMap.insert(std::make_pair(staticMesh, BatchedStaticMeshContainer::mapped_type())).first;
staticMesh->AddResourceListener(this, ResourceType_StaticMesh);
NzSpheref& squaredBoundingSphere = it2->second.first;
squaredBoundingSphere.Set(staticMesh->GetAABB().GetSquaredBoundingSphere());
///TODO: Écouter le StaticMesh pour repérer tout changement de géométrie
}
std::vector<StaticData>& staticDataContainer = it2->second.second;
unsigned int instanceCount = staticDataContainer.size() + 1;
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instanceCount >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
staticDataContainer.resize(instanceCount);
StaticData& data = staticDataContainer.back();
data.transformMatrix = transformMatrix;
}
break;
}
}
}
void NzForwardRenderQueue::Clear(bool fully)
{
directionalLights.clear();
lights.clear();
otherDrawables.clear();
transparentsModels.clear();
transparentSkeletalModels.clear();
transparentStaticModels.clear();
transparentModels.clear();
transparentModelData.clear();
if (fully)
{
@ -189,18 +155,15 @@ void NzForwardRenderQueue::Clear(bool fully)
const NzMaterial* material = matIt.first;
material->RemoveResourceListener(this);
BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second);
for (auto& meshIt : skeletalContainer)
MeshInstanceContainer& instances = std::get<2>(matIt.second);
for (auto& instanceIt : instances)
{
const NzSkeletalMesh* skeletalMesh = meshIt.first;
skeletalMesh->RemoveResourceListener(this);
}
const NzMeshData& renderData = instanceIt.first;
BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second);
for (auto& meshIt : staticContainer)
{
const NzStaticMesh* staticMesh = meshIt.first;
staticMesh->RemoveResourceListener(this);
if (renderData.indexBuffer)
renderData.indexBuffer->RemoveResourceListener(this);
renderData.vertexBuffer->RemoveResourceListener(this);
}
}
opaqueModels.clear();
@ -212,15 +175,10 @@ void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer)
{
struct TransparentModelComparator
{
bool operator()(const std::pair<unsigned int, bool>& index1, const std::pair<unsigned int, bool>& index2)
bool operator()(unsigned int index1, unsigned int index2)
{
const NzSpheref& sphere1 = (index1.second) ?
queue->transparentStaticModels[index1.first].boundingSphere :
queue->transparentSkeletalModels[index1.first].boundingSphere;
const NzSpheref& sphere2 = (index2.second) ?
queue->transparentStaticModels[index2.first].boundingSphere :
queue->transparentSkeletalModels[index2.first].boundingSphere;
const NzSpheref& sphere1 = queue->transparentModelData[index1].boundingSphere;
const NzSpheref& sphere2 = queue->transparentModelData[index2].boundingSphere;
NzVector3f position1 = sphere1.GetNegativeVertex(viewerNormal);
NzVector3f position2 = sphere2.GetNegativeVertex(viewerNormal);
@ -234,30 +192,48 @@ void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer)
};
TransparentModelComparator comparator {this, viewer->GetFrustum().GetPlane(nzFrustumPlane_Near), viewer->GetForward()};
std::sort(transparentsModels.begin(), transparentsModels.end(), comparator);
std::sort(transparentModels.begin(), transparentModels.end(), comparator);
}
bool NzForwardRenderQueue::OnResourceDestroy(const NzResource* resource, int index)
{
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
opaqueModels.erase(static_cast<const NzMaterial*>(resource));
break;
case ResourceType_SkeletalMesh:
case ResourceType_VertexBuffer:
{
for (auto& pair : opaqueModels)
std::get<2>(pair.second).erase(static_cast<const NzSkeletalMesh*>(resource));
break;
}
case ResourceType_StaticMesh:
{
for (auto& pair : opaqueModels)
std::get<3>(pair.second).erase(static_cast<const NzStaticMesh*>(resource));
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
@ -272,7 +248,25 @@ void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int in
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it)
{
if (it->first == resource)
@ -282,38 +276,20 @@ void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int in
}
}
break;
case ResourceType_SkeletalMesh:
{
for (auto& pair : opaqueModels)
{
BatchedSkeletalMeshContainer& container = std::get<2>(pair.second);
for (auto it = container.begin(); it != container.end(); ++it)
{
if (it->first == resource)
{
container.erase(it);
break;
}
}
}
break;
}
case ResourceType_StaticMesh:
case ResourceType_VertexBuffer:
{
for (auto& pair : opaqueModels)
for (auto& modelPair : opaqueModels)
{
BatchedStaticMeshContainer& container = std::get<3 >(pair.second);
for (auto it = container.begin(); it != container.end(); ++it)
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
if (it->first == resource)
{
container.erase(it);
break;
}
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
@ -349,8 +325,8 @@ bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzM
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
const NzShader* shader1 = mat1->GetShaderInstance()->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance()->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
@ -363,38 +339,20 @@ bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzM
return mat1 < mat2;
}
bool NzForwardRenderQueue::BatchedSkeletalMeshComparator::operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2)
bool NzForwardRenderQueue::MeshDataComparator::operator()(const NzMeshData& data1, const NzMeshData& data2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzBuffer* buffer1;
const NzBuffer* buffer2;
const NzIndexBuffer* iBuffer2 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer2 < buffer2;
}
bool NzForwardRenderQueue::BatchedStaticMeshComparator::operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzIndexBuffer* iBuffer2 = subMesh2->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
{
buffer1 = subMesh1->GetVertexBuffer()->GetBuffer();
buffer2 = subMesh2->GetVertexBuffer()->GetBuffer();
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer1 < buffer2;
}
else
buffer1 = (data1.indexBuffer) ? data1.indexBuffer->GetBuffer() : nullptr;
buffer2 = (data2.indexBuffer) ? data2.indexBuffer->GetBuffer() : nullptr;
if (buffer1 != buffer2)
return buffer1 < buffer2;
buffer1 = data1.vertexBuffer->GetBuffer();
buffer2 = data2.vertexBuffer->GetBuffer();
if (buffer1 != buffer2)
return buffer1 < buffer2;
return data1.primitiveMode < data2.primitiveMode;
}

View File

@ -84,12 +84,12 @@ bool NzForwardRenderTechnique::Draw(const NzScene* scene) const
if (!m_renderQueue.opaqueModels.empty())
DrawOpaqueModels(scene);
if (!m_renderQueue.transparentModels.empty())
DrawTransparentModels(scene);
if (!m_renderQueue.sprites.empty())
DrawSprites(scene);
if (!m_renderQueue.transparentsModels.empty())
DrawTransparentModels(scene);
// Les autres drawables (Exemple: Terrain)
for (const NzDrawable* drawable : m_renderQueue.otherDrawables)
drawable->Draw();
@ -174,10 +174,9 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
if (used)
{
bool& renderQueueInstancing = std::get<1>(matIt.second);
NzForwardRenderQueue::BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second);
NzForwardRenderQueue::BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second);
NzForwardRenderQueue::MeshInstanceContainer& meshInstances = std::get<2>(matIt.second);
if (!skeletalContainer.empty() || !staticContainer.empty())
if (!meshInstances.empty())
{
const NzMaterial* material = matIt.first;
@ -203,28 +202,17 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
lastShader = shader;
}
// Meshs squelettiques
/*if (!skeletalContainer.empty())
{
NzRenderer::SetVertexBuffer(m_skinningBuffer); // Vertex buffer commun
for (auto& subMeshIt : container)
{
///TODO
}
}*/
// Meshs statiques
for (auto& subMeshIt : staticContainer)
// Meshes
for (auto& subMeshIt : meshInstances)
{
const NzMeshData& meshData = subMeshIt.first;
const NzSpheref& boundingSphere = subMeshIt.second.first;
const NzStaticMesh* mesh = subMeshIt.first;
std::vector<NzForwardRenderQueue::StaticData>& staticData = subMeshIt.second.second;
std::vector<NzMatrix4f>& instances = subMeshIt.second.second;
if (!staticData.empty())
if (!instances.empty())
{
const NzIndexBuffer* indexBuffer = mesh->GetIndexBuffer();
const NzVertexBuffer* vertexBuffer = mesh->GetVertexBuffer();
const NzIndexBuffer* indexBuffer = meshData.indexBuffer;
const NzVertexBuffer* vertexBuffer = meshData.vertexBuffer;
// Gestion du draw call avant la boucle de rendu
std::function<void(nzPrimitiveMode, unsigned int, unsigned int)> DrawFunc;
@ -247,15 +235,12 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
NzRenderer::SetIndexBuffer(indexBuffer);
NzRenderer::SetVertexBuffer(vertexBuffer);
nzPrimitiveMode primitiveMode = mesh->GetPrimitiveMode();
if (instancing)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
NzVertexBuffer* instanceBuffer = NzRenderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(NzVertexDeclaration::Get(nzVertexLayout_Matrix4));
unsigned int stride = instanceBuffer->GetStride();
// Avec l'instancing, impossible de sélectionner les lumières pour chaque objet
// Du coup, il n'est activé que pour les lumières directionnelles
unsigned int lightCount = m_directionalLights.GetLightCount();
@ -288,32 +273,26 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
NzLight::Disable(shader, lightUniforms->uniforms, lightUniforms->offset*i);
}
const NzForwardRenderQueue::StaticData* data = &staticData[0];
unsigned int instanceCount = staticData.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount();
const NzMatrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
while (instanceCount > 0)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
NzBufferMapper<NzVertexBuffer> mapper(instanceBuffer, nzBufferAccess_DiscardAndWrite, 0, renderedInstanceCount);
nzUInt8* ptr = reinterpret_cast<nzUInt8*>(mapper.GetPointer());
// On remplit l'instancing buffer avec nos matrices world
instanceBuffer->Fill(instanceMatrices, 0, renderedInstanceCount, true);
instanceMatrices += renderedInstanceCount;
for (unsigned int i = 0; i < renderedInstanceCount; ++i)
{
std::memcpy(ptr, data->transformMatrix, sizeof(float)*16);
data++;
ptr += stride;
}
mapper.Unmap();
InstancedDrawFunc(renderedInstanceCount, primitiveMode, 0, indexCount);
// Et on affiche
InstancedDrawFunc(renderedInstanceCount, meshData.primitiveMode, 0, indexCount);
}
}
// On n'oublie pas de désactiver le blending pour ne pas interférer sur le reste du rendu
NzRenderer::Enable(nzRendererParameter_Blend, false);
NzRenderer::SetDepthFunc(oldDepthFunc);
}
@ -321,16 +300,16 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
{
if (lightUniforms->exists)
{
for (const NzForwardRenderQueue::StaticData& data : staticData)
for (const NzMatrix4f& matrix : instances)
{
unsigned int directionalLightCount = m_directionalLights.GetLightCount();
unsigned int otherLightCount = m_lights.ComputeClosestLights(data.transformMatrix.GetTranslation() + boundingSphere.GetPosition(), boundingSphere.radius, m_maxLightPassPerObject*NAZARA_GRAPHICS_MAX_LIGHTPERPASS - directionalLightCount);
unsigned int otherLightCount = m_lights.ComputeClosestLights(matrix.GetTranslation() + boundingSphere.GetPosition(), boundingSphere.radius, m_maxLightPassPerObject*NAZARA_GRAPHICS_MAX_LIGHTPERPASS - directionalLightCount);
unsigned int lightCount = directionalLightCount + otherLightCount;
NzRenderer::SetMatrix(nzMatrixType_World, data.transformMatrix);
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
unsigned int directionalLightIndex = 0;
unsigned int otherLightIndex = 0;
nzRendererComparison oldDepthFunc = NzRenderer::GetDepthFunc();
nzRendererComparison oldDepthFunc = NzRenderer::GetDepthFunc(); // Dans le cas où nous aurions à le changer
unsigned int passCount = (lightCount == 0) ? 1 : (lightCount-1)/NAZARA_GRAPHICS_MAX_LIGHTPERPASS + 1;
for (unsigned int pass = 0; pass < passCount; ++pass)
@ -349,6 +328,7 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
NzRenderer::SetDepthFunc(nzRendererComparison_Equal);
}
// On active les lumières de cette passe-ci
for (unsigned int i = 0; i < renderedLightCount; ++i)
{
if (directionalLightIndex >= directionalLightCount)
@ -357,10 +337,12 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
m_directionalLights.GetLight(directionalLightIndex++)->Enable(shader, lightUniforms->uniforms, lightUniforms->offset*i);
}
// On désactive l'éventuel surplus
for (unsigned int i = renderedLightCount; i < NAZARA_GRAPHICS_MAX_LIGHTPERPASS; ++i)
NzLight::Disable(shader, lightUniforms->uniforms, lightUniforms->offset*i);
DrawFunc(primitiveMode, 0, indexCount);
// Et on passe à l'affichage
DrawFunc(meshData.primitiveMode, 0, indexCount);
}
NzRenderer::Enable(nzRendererParameter_Blend, false);
@ -369,14 +351,17 @@ void NzForwardRenderTechnique::DrawOpaqueModels(const NzScene* scene) const
}
else
{
for (const NzForwardRenderQueue::StaticData& data : staticData)
// Sans instancing, on doit effectuer un drawcall pour chaque instance
// Cela reste néanmoins plus rapide que l'instancing en dessous d'un certain nombre d'instances
// À cause du temps de modification du buffer d'instancing
for (const NzMatrix4f& matrix : instances)
{
NzRenderer::SetMatrix(nzMatrixType_World, data.transformMatrix);
DrawFunc(primitiveMode, 0, indexCount);
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
DrawFunc(meshData.primitiveMode, 0, indexCount);
}
}
}
staticData.clear();
instances.clear();
}
}
}
@ -471,12 +456,12 @@ void NzForwardRenderTechnique::DrawTransparentModels(const NzScene* scene) const
const NzShader* lastShader = nullptr;
unsigned int lightCount = 0;
for (const std::pair<unsigned int, bool>& pair : m_renderQueue.transparentsModels)
for (unsigned int index : m_renderQueue.transparentModels)
{
const NzForwardRenderQueue::TransparentModelData& modelData = m_renderQueue.transparentModelData[index];
// Matériau
const NzMaterial* material = (pair.second) ?
m_renderQueue.transparentStaticModels[pair.first].material :
m_renderQueue.transparentSkeletalModels[pair.first].material;
const NzMaterial* material = modelData.material;
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
const NzShader* shader = material->Apply();
@ -501,52 +486,43 @@ void NzForwardRenderTechnique::DrawTransparentModels(const NzScene* scene) const
}
// Mesh
if (pair.second)
const NzMatrix4f& matrix = modelData.transformMatrix;
const NzMeshData& meshData = modelData.meshData;
const NzIndexBuffer* indexBuffer = meshData.indexBuffer;
const NzVertexBuffer* vertexBuffer = meshData.vertexBuffer;
// Gestion du draw call avant la boucle de rendu
std::function<void(nzPrimitiveMode, unsigned int, unsigned int)> DrawFunc;
unsigned int indexCount;
if (indexBuffer)
{
NzForwardRenderQueue::TransparentStaticModel& staticModel = m_renderQueue.transparentStaticModels[pair.first];
const NzMatrix4f& matrix = staticModel.transformMatrix;
const NzStaticMesh* mesh = staticModel.mesh;
const NzIndexBuffer* indexBuffer = mesh->GetIndexBuffer();
const NzVertexBuffer* vertexBuffer = mesh->GetVertexBuffer();
// Gestion du draw call avant la boucle de rendu
std::function<void(nzPrimitiveMode, unsigned int, unsigned int)> DrawFunc;
unsigned int indexCount;
if (indexBuffer)
{
DrawFunc = NzRenderer::DrawIndexedPrimitives;
indexCount = indexBuffer->GetIndexCount();
}
else
{
DrawFunc = NzRenderer::DrawPrimitives;
indexCount = vertexBuffer->GetVertexCount();
}
NzRenderer::SetIndexBuffer(indexBuffer);
NzRenderer::SetVertexBuffer(vertexBuffer);
// Calcul des lumières les plus proches
if (lightCount < NAZARA_GRAPHICS_MAX_LIGHTPERPASS && !m_lights.IsEmpty())
{
unsigned int count = std::min(NAZARA_GRAPHICS_MAX_LIGHTPERPASS - lightCount, m_lights.ComputeClosestLights(matrix.GetTranslation() + staticModel.boundingSphere.GetPosition(), staticModel.boundingSphere.radius, NAZARA_GRAPHICS_MAX_LIGHTPERPASS));
for (unsigned int i = 0; i < count; ++i)
m_lights.GetResult(i)->Enable(shader, lightUniforms->uniforms, lightUniforms->offset*(lightCount++));
}
for (unsigned int i = lightCount; i < NAZARA_GRAPHICS_MAX_LIGHTPERPASS; ++i)
NzLight::Disable(shader, lightUniforms->uniforms, lightUniforms->offset*i);
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
DrawFunc(mesh->GetPrimitiveMode(), 0, indexCount);
DrawFunc = NzRenderer::DrawIndexedPrimitives;
indexCount = indexBuffer->GetIndexCount();
}
else
{
///TODO
DrawFunc = NzRenderer::DrawPrimitives;
indexCount = vertexBuffer->GetVertexCount();
}
NzRenderer::SetIndexBuffer(indexBuffer);
NzRenderer::SetVertexBuffer(vertexBuffer);
// Calcul des lumières les plus proches
if (lightCount < NAZARA_GRAPHICS_MAX_LIGHTPERPASS && !m_lights.IsEmpty())
{
unsigned int count = std::min(NAZARA_GRAPHICS_MAX_LIGHTPERPASS - lightCount, m_lights.ComputeClosestLights(matrix.GetTranslation() + modelData.boundingSphere.GetPosition(), modelData.boundingSphere.radius, NAZARA_GRAPHICS_MAX_LIGHTPERPASS));
for (unsigned int i = 0; i < count; ++i)
m_lights.GetResult(i)->Enable(shader, lightUniforms->uniforms, lightUniforms->offset*(lightCount++));
}
for (unsigned int i = lightCount; i < NAZARA_GRAPHICS_MAX_LIGHTPERPASS; ++i)
NzLight::Disable(shader, lightUniforms->uniforms, lightUniforms->offset*i);
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
DrawFunc(meshData.primitiveMode, 0, indexCount);
}
}