Added RenderTextures (And many others things)
-Added Forward, left and up vector (Vector3) -Added Matrix4::ConcatenateAffine shortcut -Added Quaternion::GetInverse() and Quaternion::Inverse() -Added Resource listeners -Added Depth and stencil pixel formats -All enums now have an ending "max" entry -Animation/Mesh::Add[Sequence/Skin/SubMesh] now returns a boolean -Contexts are now resources -Enhanced AnimatedMesh demo -Fixed MD2 facing -Fixed Vector3::CrossProduct -Made Resource thread-safe -Made OpenGL translation table global -Many bugfixes -MLT will now write malloc failure to the log -Most of the strcpy were replaced with faster memcpy -Occlusion queries availability is now always tested -OpenGL-related includes now requires NAZARA_RENDERER_OPENGL to be defined to have any effect -Pixel formats now have a type -Renamed RenderTarget::IsValid to IsRenderable -Renamed Quaternion::GetNormalized() to GetNormal() -Renamed Texture::Bind() to Prepare() -Renamed VectorX::Make[Ceil|Floor] to Maximize/Minimize -Removed MATH_MATRIX_COLUMN_MAJOR option (all matrices are column-major) -Removed RENDERER_ACTIVATE_RENDERWINDOW_ON_CREATION option (Render windows are active upon their creation) Former-commit-id: 0d1da1e32c156a958221edf04a5315c75b354450
This commit is contained in:
@@ -1,52 +1,49 @@
|
||||
/*
|
||||
Nazara Engine - Mathematics module
|
||||
|
||||
Copyright (C) 2012 Jérôme "Lynix" Leclercq (Lynix680@gmail.com)
|
||||
Rémi "overdrivr" Bèges (remi.beges@laposte.net)
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
of the Software, and to permit persons to whom the Software is furnished to do
|
||||
so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_CONFIG_MATH_HPP
|
||||
#define NAZARA_CONFIG_MATH_HPP
|
||||
|
||||
/// Chaque modification d'un paramètre du module nécessite une recompilation de celui-ci
|
||||
|
||||
// Définit le radian comme l'unité utilisée pour les angles
|
||||
#define NAZARA_MATH_ANGLE_RADIAN 0
|
||||
|
||||
// Définit la disposition des matrices en colonnes (Façon OpenGL)
|
||||
#define NAZARA_MATH_MATRIX_COLUMN_MAJOR 1
|
||||
|
||||
// Optimise les opérations entre matrices affines (Demande plusieurs comparaisons pour déterminer si une matrice est affine)
|
||||
#define NAZARA_MATH_MATRIX4_CHECK_AFFINE 0
|
||||
|
||||
// Active les tests de sécurité basés sur le code (Conseillé pour le développement)
|
||||
#define NAZARA_MATH_SAFE 1
|
||||
|
||||
// Protège les classes des accès concurrentiels
|
||||
#define NAZARA_MATH_THREADSAFE 1
|
||||
|
||||
// Les classes à protéger des accès concurrentiels
|
||||
#define NAZARA_THREADSAFETY_MATRIX3 1 // NzMatrix3 (COW)
|
||||
#define NAZARA_THREADSAFETY_MATRIX4 1 // NzMatrix4 (COW)
|
||||
|
||||
#endif // NAZARA_CONFIG_MATH_HPP
|
||||
/*
|
||||
Nazara Engine - Mathematics module
|
||||
|
||||
Copyright (C) 2012 Jérôme "Lynix" Leclercq (Lynix680@gmail.com)
|
||||
Rémi "overdrivr" Bèges (remi.beges@laposte.net)
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
of the Software, and to permit persons to whom the Software is furnished to do
|
||||
so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_CONFIG_MATH_HPP
|
||||
#define NAZARA_CONFIG_MATH_HPP
|
||||
|
||||
/// Chaque modification d'un paramètre du module nécessite une recompilation de celui-ci
|
||||
|
||||
// Définit le radian comme l'unité utilisée pour les angles
|
||||
#define NAZARA_MATH_ANGLE_RADIAN 0
|
||||
|
||||
// Optimise les opérations entre matrices affines (Demande plusieurs comparaisons pour déterminer si une matrice est affine)
|
||||
#define NAZARA_MATH_MATRIX4_CHECK_AFFINE 0
|
||||
|
||||
// Active les tests de sécurité basés sur le code (Conseillé pour le développement)
|
||||
#define NAZARA_MATH_SAFE 1
|
||||
|
||||
// Protège les classes des accès concurrentiels
|
||||
#define NAZARA_MATH_THREADSAFE 1
|
||||
|
||||
// Les classes à protéger des accès concurrentiels
|
||||
#define NAZARA_THREADSAFETY_MATRIX3 1 // NzMatrix3 (COW)
|
||||
#define NAZARA_THREADSAFETY_MATRIX4 1 // NzMatrix4 (COW)
|
||||
|
||||
#endif // NAZARA_CONFIG_MATH_HPP
|
||||
|
||||
@@ -1,144 +1,145 @@
|
||||
// Copyright (C) 2012 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_MATRIX4_HPP
|
||||
#define NAZARA_MATRIX4_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Config.hpp>
|
||||
|
||||
#if NAZARA_MATH_THREADSAFE && NAZARA_THREADSAFETY_MATRIX4
|
||||
#include <Nazara/Core/ThreadSafety.hpp>
|
||||
#else
|
||||
#include <Nazara/Core/ThreadSafetyOff.hpp>
|
||||
#endif
|
||||
|
||||
template<typename T> class NzEulerAngles;
|
||||
template<typename T> class NzQuaternion;
|
||||
template<typename T> class NzVector2;
|
||||
template<typename T> class NzVector3;
|
||||
template<typename T> class NzVector4;
|
||||
|
||||
template<typename T> class NzMatrix4
|
||||
{
|
||||
public:
|
||||
NzMatrix4();
|
||||
NzMatrix4(T r11, T r12, T r13, T r14,
|
||||
T r21, T r22, T r23, T r24,
|
||||
T r31, T r32, T r33, T r34,
|
||||
T r41, T r42, T r43, T r44);
|
||||
NzMatrix4(const T matrix[16]);
|
||||
//NzMatrix4(const NzMatrix3<T>& matrix);
|
||||
template<typename U> explicit NzMatrix4(const NzMatrix4<U>& matrix);
|
||||
NzMatrix4(const NzMatrix4& matrix);
|
||||
NzMatrix4(NzMatrix4&& matrix) noexcept;
|
||||
~NzMatrix4();
|
||||
|
||||
NzMatrix4 Concatenate(const NzMatrix4& matrix) const;
|
||||
|
||||
T GetDeterminant() const;
|
||||
NzMatrix4 GetInverse() const;
|
||||
NzQuaternion<T> GetRotation() const;
|
||||
//NzMatrix3 GetRotationMatrix() const;
|
||||
NzVector3<T> GetScale() const;
|
||||
NzVector3<T> GetTranslation() const;
|
||||
NzMatrix4 GetTransposed() const;
|
||||
|
||||
bool HasNegativeScale() const;
|
||||
bool HasScale() const;
|
||||
|
||||
bool IsAffine() const;
|
||||
bool IsDefined() const;
|
||||
|
||||
void MakeIdentity();
|
||||
void MakeLookAt(const NzVector3<T>& eye, const NzVector3<T>& center, const NzVector3<T>& up);
|
||||
void MakeOrtho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
|
||||
void MakePerspective(T angle, T ratio, T zNear, T zFar);
|
||||
void MakeRotation(const NzQuaternion<T>& rotation);
|
||||
void MakeScale(const NzVector3<T>& scale);
|
||||
void MakeTranslation(const NzVector3<T>& translation);
|
||||
void MakeZero();
|
||||
|
||||
void Set(T r11, T r12, T r13, T r14,
|
||||
T r21, T r22, T r23, T r24,
|
||||
T r31, T r32, T r33, T r34,
|
||||
T r41, T r42, T r43, T r44);
|
||||
void Set(const T matrix[16]);
|
||||
//NzMatrix4(const NzMatrix3<T>& matrix);
|
||||
void Set(const NzMatrix4& matrix);
|
||||
void Set(NzMatrix4&& matrix);
|
||||
template<typename U> void Set(const NzMatrix4<U>& matrix);
|
||||
void SetRotation(const NzQuaternion<T>& rotation);
|
||||
void SetScale(const NzVector3<T>& scale);
|
||||
void SetTranslation(const NzVector3<T>& translation);
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
NzVector2<T> Transform(const NzVector2<T>& vector, T z = 0.0, T w = 1.0) const;
|
||||
NzVector3<T> Transform(const NzVector3<T>& vector, T w = 1.0) const;
|
||||
NzVector4<T> Transform(const NzVector4<T>& vector) const;
|
||||
|
||||
NzMatrix4& Transpose();
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator()(unsigned int x, unsigned int y);
|
||||
const T& operator()(unsigned int x, unsigned int y) const;
|
||||
|
||||
NzMatrix4& operator=(const NzMatrix4& matrix);
|
||||
NzMatrix4& operator=(NzMatrix4&& matrix) noexcept;
|
||||
|
||||
NzMatrix4 operator*(const NzMatrix4& matrix) const;
|
||||
NzVector2<T> operator*(const NzVector2<T>& vector) const;
|
||||
NzVector3<T> operator*(const NzVector3<T>& vector) const;
|
||||
NzVector4<T> operator*(const NzVector4<T>& vector) const;
|
||||
NzMatrix4 operator*(T scalar) const;
|
||||
|
||||
NzMatrix4& operator*=(const NzMatrix4& matrix);
|
||||
NzMatrix4& operator*=(T scalar);
|
||||
|
||||
static NzMatrix4 Concatenate(const NzMatrix4& m1, const NzMatrix4& m2);
|
||||
static NzMatrix4 ConcatenateAffine(const NzMatrix4& m1, const NzMatrix4& m2);
|
||||
static NzMatrix4 Identity();
|
||||
static NzMatrix4 LookAt(const NzVector3<T>& eye, const NzVector3<T>& center, const NzVector3<T>& up);
|
||||
static NzMatrix4 Ortho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
|
||||
static NzMatrix4 Perspective(T angle, T ratio, T zNear, T zFar);
|
||||
static NzMatrix4 Rotate(const NzQuaternion<T>& rotation);
|
||||
static NzMatrix4 Scale(const NzVector3<T>& scale);
|
||||
static NzMatrix4 Translate(const NzVector3<T>& translation);
|
||||
static NzMatrix4 Zero();
|
||||
|
||||
struct SharedMatrix
|
||||
{
|
||||
T m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44;
|
||||
|
||||
unsigned short refCount = 1;
|
||||
NazaraMutex(mutex)
|
||||
};
|
||||
|
||||
private:
|
||||
void EnsureOwnership();
|
||||
void ReleaseMatrix();
|
||||
|
||||
SharedMatrix* m_sharedMatrix = nullptr;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzMatrix4<T>& matrix);
|
||||
|
||||
template<typename T> NzMatrix4<T> operator*(T scale, const NzMatrix4<T>& matrix);
|
||||
|
||||
typedef NzMatrix4<double> NzMatrix4d;
|
||||
typedef NzMatrix4<float> NzMatrix4f;
|
||||
|
||||
#include <Nazara/Math/Matrix4.inl>
|
||||
|
||||
#endif // NAZARA_MATRIX4_HPP
|
||||
// Copyright (C) 2012 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_MATRIX4_HPP
|
||||
#define NAZARA_MATRIX4_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Config.hpp>
|
||||
|
||||
#if NAZARA_MATH_THREADSAFE && NAZARA_THREADSAFETY_MATRIX4
|
||||
#include <Nazara/Core/ThreadSafety.hpp>
|
||||
#else
|
||||
#include <Nazara/Core/ThreadSafetyOff.hpp>
|
||||
#endif
|
||||
|
||||
template<typename T> class NzEulerAngles;
|
||||
template<typename T> class NzQuaternion;
|
||||
template<typename T> class NzVector2;
|
||||
template<typename T> class NzVector3;
|
||||
template<typename T> class NzVector4;
|
||||
|
||||
template<typename T> class NzMatrix4
|
||||
{
|
||||
public:
|
||||
NzMatrix4();
|
||||
NzMatrix4(T r11, T r12, T r13, T r14,
|
||||
T r21, T r22, T r23, T r24,
|
||||
T r31, T r32, T r33, T r34,
|
||||
T r41, T r42, T r43, T r44);
|
||||
NzMatrix4(const T matrix[16]);
|
||||
//NzMatrix4(const NzMatrix3<T>& matrix);
|
||||
template<typename U> explicit NzMatrix4(const NzMatrix4<U>& matrix);
|
||||
NzMatrix4(const NzMatrix4& matrix);
|
||||
NzMatrix4(NzMatrix4&& matrix) noexcept;
|
||||
~NzMatrix4();
|
||||
|
||||
NzMatrix4 Concatenate(const NzMatrix4& matrix) const;
|
||||
NzMatrix4 ConcatenateAffine(const NzMatrix4& matrix) const;
|
||||
|
||||
T GetDeterminant() const;
|
||||
NzMatrix4 GetInverse() const;
|
||||
NzQuaternion<T> GetRotation() const;
|
||||
//NzMatrix3 GetRotationMatrix() const;
|
||||
NzVector3<T> GetScale() const;
|
||||
NzVector3<T> GetTranslation() const;
|
||||
NzMatrix4 GetTransposed() const;
|
||||
|
||||
bool HasNegativeScale() const;
|
||||
bool HasScale() const;
|
||||
|
||||
bool IsAffine() const;
|
||||
bool IsDefined() const;
|
||||
|
||||
void MakeIdentity();
|
||||
void MakeLookAt(const NzVector3<T>& eye, const NzVector3<T>& target, const NzVector3<T>& up = NzVector3<T>::Up());
|
||||
void MakeOrtho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
|
||||
void MakePerspective(T angle, T ratio, T zNear, T zFar);
|
||||
void MakeRotation(const NzQuaternion<T>& rotation);
|
||||
void MakeScale(const NzVector3<T>& scale);
|
||||
void MakeTranslation(const NzVector3<T>& translation);
|
||||
void MakeZero();
|
||||
|
||||
void Set(T r11, T r12, T r13, T r14,
|
||||
T r21, T r22, T r23, T r24,
|
||||
T r31, T r32, T r33, T r34,
|
||||
T r41, T r42, T r43, T r44);
|
||||
void Set(const T matrix[16]);
|
||||
//NzMatrix4(const NzMatrix3<T>& matrix);
|
||||
void Set(const NzMatrix4& matrix);
|
||||
void Set(NzMatrix4&& matrix);
|
||||
template<typename U> void Set(const NzMatrix4<U>& matrix);
|
||||
void SetRotation(const NzQuaternion<T>& rotation);
|
||||
void SetScale(const NzVector3<T>& scale);
|
||||
void SetTranslation(const NzVector3<T>& translation);
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
NzVector2<T> Transform(const NzVector2<T>& vector, T z = 0.0, T w = 1.0) const;
|
||||
NzVector3<T> Transform(const NzVector3<T>& vector, T w = 1.0) const;
|
||||
NzVector4<T> Transform(const NzVector4<T>& vector) const;
|
||||
|
||||
NzMatrix4& Transpose();
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator()(unsigned int x, unsigned int y);
|
||||
const T& operator()(unsigned int x, unsigned int y) const;
|
||||
|
||||
NzMatrix4& operator=(const NzMatrix4& matrix);
|
||||
NzMatrix4& operator=(NzMatrix4&& matrix) noexcept;
|
||||
|
||||
NzMatrix4 operator*(const NzMatrix4& matrix) const;
|
||||
NzVector2<T> operator*(const NzVector2<T>& vector) const;
|
||||
NzVector3<T> operator*(const NzVector3<T>& vector) const;
|
||||
NzVector4<T> operator*(const NzVector4<T>& vector) const;
|
||||
NzMatrix4 operator*(T scalar) const;
|
||||
|
||||
NzMatrix4& operator*=(const NzMatrix4& matrix);
|
||||
NzMatrix4& operator*=(T scalar);
|
||||
|
||||
static NzMatrix4 Concatenate(const NzMatrix4& m1, const NzMatrix4& m2);
|
||||
static NzMatrix4 ConcatenateAffine(const NzMatrix4& m1, const NzMatrix4& m2);
|
||||
static NzMatrix4 Identity();
|
||||
static NzMatrix4 LookAt(const NzVector3<T>& eye, const NzVector3<T>& target, const NzVector3<T>& up = NzVector3<T>::Up());
|
||||
static NzMatrix4 Ortho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
|
||||
static NzMatrix4 Perspective(T angle, T ratio, T zNear, T zFar);
|
||||
static NzMatrix4 Rotate(const NzQuaternion<T>& rotation);
|
||||
static NzMatrix4 Scale(const NzVector3<T>& scale);
|
||||
static NzMatrix4 Translate(const NzVector3<T>& translation);
|
||||
static NzMatrix4 Zero();
|
||||
|
||||
struct SharedMatrix
|
||||
{
|
||||
T m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44;
|
||||
|
||||
unsigned short refCount = 1;
|
||||
NazaraMutex(mutex)
|
||||
};
|
||||
|
||||
private:
|
||||
void EnsureOwnership();
|
||||
void ReleaseMatrix();
|
||||
|
||||
SharedMatrix* m_sharedMatrix = nullptr;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzMatrix4<T>& matrix);
|
||||
|
||||
template<typename T> NzMatrix4<T> operator*(T scale, const NzMatrix4<T>& matrix);
|
||||
|
||||
typedef NzMatrix4<double> NzMatrix4d;
|
||||
typedef NzMatrix4<float> NzMatrix4f;
|
||||
|
||||
#include <Nazara/Math/Matrix4.inl>
|
||||
|
||||
#endif // NAZARA_MATRIX4_HPP
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,90 +1,93 @@
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_QUATERNION_HPP
|
||||
#define NAZARA_QUATERNION_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
|
||||
template<typename T> class NzEulerAngles;
|
||||
template<typename T> class NzVector3;
|
||||
|
||||
template<typename T> class NzQuaternion
|
||||
{
|
||||
public:
|
||||
NzQuaternion();
|
||||
NzQuaternion(T W, T X, T Y, T Z);
|
||||
NzQuaternion(T quat[4]);
|
||||
NzQuaternion(T angle, const NzVector3<T>& axis);
|
||||
NzQuaternion(const NzEulerAngles<T>& angles);
|
||||
//NzQuaternion(const NzMatrix3<T>& mat);
|
||||
template<typename U> explicit NzQuaternion(const NzQuaternion<U>& quat);
|
||||
NzQuaternion(const NzQuaternion& quat) = default;
|
||||
~NzQuaternion() = default;
|
||||
|
||||
T DotProduct(const NzQuaternion& vec) const;
|
||||
|
||||
NzQuaternion GetConjugate() const;
|
||||
NzQuaternion GetNormalized() const;
|
||||
|
||||
void MakeIdentity();
|
||||
void MakeZero();
|
||||
|
||||
T Magnitude() const;
|
||||
|
||||
T Normalize();
|
||||
|
||||
void Set(T W, T X, T Y, T Z);
|
||||
void Set(T quat[4]);
|
||||
void Set(T angle, const NzVector3<T>& normalizedAxis);
|
||||
void Set(const NzEulerAngles<T>& angles);
|
||||
//void Set(const NzMatrix3<T>& mat);
|
||||
void Set(const NzQuaternion& quat);
|
||||
template<typename U> void Set(const NzQuaternion<U>& quat);
|
||||
|
||||
T SquaredMagnitude() const;
|
||||
|
||||
NzEulerAngles<T> ToEulerAngles() const;
|
||||
//NzMatrix3<T> ToRotationMatrix() const;
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
NzQuaternion& operator=(const NzQuaternion& quat);
|
||||
|
||||
NzQuaternion operator+(const NzQuaternion& quat) const;
|
||||
NzQuaternion operator*(const NzQuaternion& quat) const;
|
||||
NzVector3<T> operator*(const NzVector3<T>& vec) const;
|
||||
NzQuaternion operator*(T scale) const;
|
||||
NzQuaternion operator/(const NzQuaternion& quat) const;
|
||||
|
||||
NzQuaternion& operator+=(const NzQuaternion& quat);
|
||||
NzQuaternion& operator*=(const NzQuaternion& quat);
|
||||
NzQuaternion& operator*=(T scale);
|
||||
NzQuaternion& operator/=(const NzQuaternion& quat);
|
||||
|
||||
bool operator==(const NzQuaternion& quat) const;
|
||||
bool operator!=(const NzQuaternion& quat) const;
|
||||
bool operator<(const NzQuaternion& quat) const;
|
||||
bool operator<=(const NzQuaternion& quat) const;
|
||||
bool operator>(const NzQuaternion& quat) const;
|
||||
bool operator>=(const NzQuaternion& quat) const;
|
||||
|
||||
static NzQuaternion Identity();
|
||||
static NzQuaternion Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp);
|
||||
static NzQuaternion Zero();
|
||||
|
||||
T w, x, y, z;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat);
|
||||
|
||||
typedef NzQuaternion<double> NzQuaterniond;
|
||||
typedef NzQuaternion<float> NzQuaternionf;
|
||||
|
||||
#include <Nazara/Math/Quaternion.inl>
|
||||
|
||||
#endif // NAZARA_QUATERNION_HPP
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_QUATERNION_HPP
|
||||
#define NAZARA_QUATERNION_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
|
||||
template<typename T> class NzEulerAngles;
|
||||
template<typename T> class NzVector3;
|
||||
|
||||
template<typename T> class NzQuaternion
|
||||
{
|
||||
public:
|
||||
NzQuaternion();
|
||||
NzQuaternion(T W, T X, T Y, T Z);
|
||||
NzQuaternion(T quat[4]);
|
||||
NzQuaternion(T angle, const NzVector3<T>& axis);
|
||||
NzQuaternion(const NzEulerAngles<T>& angles);
|
||||
//NzQuaternion(const NzMatrix3<T>& mat);
|
||||
template<typename U> explicit NzQuaternion(const NzQuaternion<U>& quat);
|
||||
NzQuaternion(const NzQuaternion& quat) = default;
|
||||
~NzQuaternion() = default;
|
||||
|
||||
T DotProduct(const NzQuaternion& vec) const;
|
||||
|
||||
NzQuaternion GetConjugate() const;
|
||||
NzQuaternion GetInverse() const;
|
||||
NzQuaternion GetNormal() const;
|
||||
|
||||
void Inverse();
|
||||
|
||||
void MakeIdentity();
|
||||
void MakeZero();
|
||||
|
||||
T Magnitude() const;
|
||||
|
||||
T Normalize();
|
||||
|
||||
void Set(T W, T X, T Y, T Z);
|
||||
void Set(T quat[4]);
|
||||
void Set(T angle, const NzVector3<T>& normalizedAxis);
|
||||
void Set(const NzEulerAngles<T>& angles);
|
||||
//void Set(const NzMatrix3<T>& mat);
|
||||
void Set(const NzQuaternion& quat);
|
||||
template<typename U> void Set(const NzQuaternion<U>& quat);
|
||||
|
||||
T SquaredMagnitude() const;
|
||||
|
||||
NzEulerAngles<T> ToEulerAngles() const;
|
||||
//NzMatrix3<T> ToRotationMatrix() const;
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
NzQuaternion& operator=(const NzQuaternion& quat);
|
||||
|
||||
NzQuaternion operator+(const NzQuaternion& quat) const;
|
||||
NzQuaternion operator*(const NzQuaternion& quat) const;
|
||||
NzVector3<T> operator*(const NzVector3<T>& vec) const;
|
||||
NzQuaternion operator*(T scale) const;
|
||||
NzQuaternion operator/(const NzQuaternion& quat) const;
|
||||
|
||||
NzQuaternion& operator+=(const NzQuaternion& quat);
|
||||
NzQuaternion& operator*=(const NzQuaternion& quat);
|
||||
NzQuaternion& operator*=(T scale);
|
||||
NzQuaternion& operator/=(const NzQuaternion& quat);
|
||||
|
||||
bool operator==(const NzQuaternion& quat) const;
|
||||
bool operator!=(const NzQuaternion& quat) const;
|
||||
bool operator<(const NzQuaternion& quat) const;
|
||||
bool operator<=(const NzQuaternion& quat) const;
|
||||
bool operator>(const NzQuaternion& quat) const;
|
||||
bool operator>=(const NzQuaternion& quat) const;
|
||||
|
||||
static NzQuaternion Identity();
|
||||
static NzQuaternion Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp);
|
||||
static NzQuaternion Zero();
|
||||
|
||||
T w, x, y, z;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat);
|
||||
|
||||
typedef NzQuaternion<double> NzQuaterniond;
|
||||
typedef NzQuaternion<float> NzQuaternionf;
|
||||
|
||||
#include <Nazara/Math/Quaternion.inl>
|
||||
|
||||
#endif // NAZARA_QUATERNION_HPP
|
||||
|
||||
@@ -1,403 +1,428 @@
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#include <Nazara/Core/StringStream.hpp>
|
||||
#include <Nazara/Math/Basic.hpp>
|
||||
#include <Nazara/Math/Config.hpp>
|
||||
#include <Nazara/Math/EulerAngles.hpp>
|
||||
#include <Nazara/Math/Vector3.hpp>
|
||||
#include <limits>
|
||||
#include <Nazara/Core/Debug.hpp>
|
||||
|
||||
#define F(a) static_cast<T>(a)
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion()
|
||||
{
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(T W, T X, T Y, T Z)
|
||||
{
|
||||
Set(W, X, Y, Z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(T quat[4])
|
||||
{
|
||||
Set(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(T angle, const NzVector3<T>& axis)
|
||||
{
|
||||
Set(angle, axis);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(const NzEulerAngles<T>& angles)
|
||||
{
|
||||
Set(angles);
|
||||
}
|
||||
/*
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(const NzMatrix3<T>& mat)
|
||||
{
|
||||
Set(mat);
|
||||
}
|
||||
*/
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
|
||||
{
|
||||
Set(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::DotProduct(const NzQuaternion& quat) const
|
||||
{
|
||||
return w*quat.w + x*quat.x + y*quat.y + z*quat.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
|
||||
{
|
||||
return NzQuaternion(w, -x, -y, -z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::GetNormalized() const
|
||||
{
|
||||
NzQuaternion<T> quat(*this);
|
||||
quat.Normalize();
|
||||
|
||||
return quat;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::MakeIdentity()
|
||||
{
|
||||
Set(1.0, 0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::MakeZero()
|
||||
{
|
||||
Set(0.0, 0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::Magnitude() const
|
||||
{
|
||||
return std::sqrt(SquaredMagnitude());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::Normalize()
|
||||
{
|
||||
T squaredMagnitude = SquaredMagnitude();
|
||||
|
||||
if (squaredMagnitude-F(1.0) > std::numeric_limits<T>::epsilon())
|
||||
{
|
||||
T magnitude = std::sqrt(squaredMagnitude);
|
||||
|
||||
w /= magnitude;
|
||||
x /= magnitude;
|
||||
y /= magnitude;
|
||||
z /= magnitude;
|
||||
|
||||
return magnitude;
|
||||
}
|
||||
else
|
||||
return F(1.0); // Le quaternion est déjà normalisé
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
|
||||
{
|
||||
w = W;
|
||||
x = X;
|
||||
y = Y;
|
||||
z = Z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(T quat[4])
|
||||
{
|
||||
w = quat[0];
|
||||
x = quat[1];
|
||||
y = quat[2];
|
||||
z = quat[3];
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(T angle, const NzVector3<T>& normalizedAxis)
|
||||
{
|
||||
#if !NAZARA_MATH_ANGLE_RADIAN
|
||||
angle = NzDegreeToRadian(angle);
|
||||
#endif
|
||||
|
||||
angle /= 2;
|
||||
|
||||
auto sinAngle = std::sin(angle);
|
||||
|
||||
w = std::cos(angle);
|
||||
x = normalizedAxis.x * sinAngle;
|
||||
y = normalizedAxis.y * sinAngle;
|
||||
z = normalizedAxis.z * sinAngle;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(const NzEulerAngles<T>& angles)
|
||||
{
|
||||
Set(angles.ToQuaternion());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
void NzQuaternion<T>::Set(const NzQuaternion<U>& quat)
|
||||
{
|
||||
w = static_cast<T>(quat.w);
|
||||
x = static_cast<T>(quat.x);
|
||||
y = static_cast<T>(quat.y);
|
||||
z = static_cast<T>(quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(const NzQuaternion& quat)
|
||||
{
|
||||
w = quat.w;
|
||||
x = quat.x;
|
||||
y = quat.y;
|
||||
z = quat.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::SquaredMagnitude() const
|
||||
{
|
||||
return w*w + x*x + y*y + z*z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
|
||||
{
|
||||
T test = x*y + z*w;
|
||||
if (test > F(0.499))
|
||||
// singularity at north pole
|
||||
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0));
|
||||
|
||||
if (test < F(-0.499))
|
||||
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
|
||||
|
||||
T xx = x*x;
|
||||
T yy = y*y;
|
||||
T zz = z*z;
|
||||
|
||||
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*xx - F(2.0)*zz)),
|
||||
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*yy - F(2.0)*zz)),
|
||||
NzRadians(std::asin(F(2.0)*test)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzString NzQuaternion<T>::ToString() const
|
||||
{
|
||||
NzStringStream ss;
|
||||
|
||||
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::operator NzString() const
|
||||
{
|
||||
return ToString();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator=(const NzQuaternion& quat)
|
||||
{
|
||||
Set(quat);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzQuaternion(w + quat.w,
|
||||
x + quat.x,
|
||||
y + quat.y,
|
||||
z + quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzQuaternion(w*quat.w - x*quat.x - y*quat.y - z*quat.z,
|
||||
w*quat.x + x*quat.w + y*quat.z - z*quat.y,
|
||||
w*quat.y + y*quat.w + z*quat.x - x*quat.z,
|
||||
w*quat.z + z*quat.w + x*quat.y - y*quat.x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
|
||||
{
|
||||
NzVector3<T> normal(vec);
|
||||
normal.Normalize();
|
||||
|
||||
NzQuaternion qvec(0.0, normal.x, normal.y, normal.z);
|
||||
NzQuaternion result(operator*(qvec * GetConjugate()));
|
||||
|
||||
return NzVector3<T>(result.x, result.y, result.z);
|
||||
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*(T scale) const
|
||||
{
|
||||
return NzQuaternion(w * scale,
|
||||
x * scale,
|
||||
y * scale,
|
||||
z * scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
|
||||
{
|
||||
return GetConjugate(quat) * (*this);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator+(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator*(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
|
||||
{
|
||||
return operator=(operator*(scale));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator/(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator==(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzNumberEquals(w, quat.w) &&
|
||||
NzNumberEquals(x, quat.x) &&
|
||||
NzNumberEquals(y, quat.y) &&
|
||||
NzNumberEquals(z, quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator!=(const NzQuaternion& quat) const
|
||||
{
|
||||
return !operator==(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator<(const NzQuaternion& quat) const
|
||||
{
|
||||
return w < quat.w && x < quat.x && y < quat.y && z < quat.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator<=(const NzQuaternion& quat) const
|
||||
{
|
||||
return operator<(quat) || operator==(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator>(const NzQuaternion& quat) const
|
||||
{
|
||||
return !operator<=(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator>=(const NzQuaternion& quat) const
|
||||
{
|
||||
return !operator<(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Identity()
|
||||
{
|
||||
NzQuaternion quaternion;
|
||||
quaternion.MakeIdentity();
|
||||
|
||||
return quaternion;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
|
||||
{
|
||||
if (interp <= F(0.0))
|
||||
return quatA;
|
||||
|
||||
if (interp >= F(1.0))
|
||||
return quatB;
|
||||
|
||||
NzQuaternion q;
|
||||
|
||||
T cosOmega = quatA.DotProduct(quatB);
|
||||
if (cosOmega < F(0.0))
|
||||
{
|
||||
// On inverse tout
|
||||
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
|
||||
cosOmega = -cosOmega;
|
||||
}
|
||||
else
|
||||
q.Set(quatB);
|
||||
|
||||
T k0, k1;
|
||||
if (cosOmega > F(0.9999))
|
||||
{
|
||||
// Interpolation linéaire pour éviter une division par zéro
|
||||
k0 = F(1.0) - interp;
|
||||
k1 = interp;
|
||||
}
|
||||
else
|
||||
{
|
||||
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
|
||||
T omega = std::atan2(sinOmega, cosOmega);
|
||||
|
||||
// Pour éviter deux divisions
|
||||
sinOmega = F(1.0)/sinOmega;
|
||||
|
||||
k0 = std::sin((F(1.0) - interp) * omega) * sinOmega;
|
||||
k1 = std::sin(interp*omega) * sinOmega;
|
||||
}
|
||||
|
||||
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
|
||||
return result += q*k1;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Zero()
|
||||
{
|
||||
NzQuaternion quaternion;
|
||||
quaternion.MakeZero();
|
||||
|
||||
return quaternion;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat)
|
||||
{
|
||||
return out << quat.ToString();
|
||||
}
|
||||
|
||||
#undef F
|
||||
|
||||
#include <Nazara/Core/DebugOff.hpp>
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#include <Nazara/Core/StringStream.hpp>
|
||||
#include <Nazara/Math/Basic.hpp>
|
||||
#include <Nazara/Math/Config.hpp>
|
||||
#include <Nazara/Math/EulerAngles.hpp>
|
||||
#include <Nazara/Math/Vector3.hpp>
|
||||
#include <limits>
|
||||
#include <Nazara/Core/Debug.hpp>
|
||||
|
||||
#define F(a) static_cast<T>(a)
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion()
|
||||
{
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(T W, T X, T Y, T Z)
|
||||
{
|
||||
Set(W, X, Y, Z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(T quat[4])
|
||||
{
|
||||
Set(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(T angle, const NzVector3<T>& axis)
|
||||
{
|
||||
Set(angle, axis);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(const NzEulerAngles<T>& angles)
|
||||
{
|
||||
Set(angles);
|
||||
}
|
||||
/*
|
||||
template<typename T>
|
||||
NzQuaternion<T>::NzQuaternion(const NzMatrix3<T>& mat)
|
||||
{
|
||||
Set(mat);
|
||||
}
|
||||
*/
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
|
||||
{
|
||||
Set(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::DotProduct(const NzQuaternion& quat) const
|
||||
{
|
||||
return w*quat.w + x*quat.x + y*quat.y + z*quat.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
|
||||
{
|
||||
return NzQuaternion(w, -x, -y, -z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::GetInverse() const
|
||||
{
|
||||
NzQuaternion<T> quat(*this);
|
||||
quat.Inverse();
|
||||
|
||||
return quat;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::GetNormal() const
|
||||
{
|
||||
NzQuaternion<T> quat(*this);
|
||||
quat.Normalize();
|
||||
|
||||
return quat;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Inverse()
|
||||
{
|
||||
T norm = SquaredMagnitude();
|
||||
if (norm > F(0.0))
|
||||
{
|
||||
T invNorm = F(1.0) / norm;
|
||||
|
||||
w *= invNorm;
|
||||
x *= -invNorm;
|
||||
y *= -invNorm;
|
||||
z *= -invNorm;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::MakeIdentity()
|
||||
{
|
||||
Set(F(1.0), F(0.0), F(0.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::MakeZero()
|
||||
{
|
||||
Set(F(0.0), F(0.0), F(0.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::Magnitude() const
|
||||
{
|
||||
return std::sqrt(SquaredMagnitude());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::Normalize()
|
||||
{
|
||||
T squaredMagnitude = SquaredMagnitude();
|
||||
|
||||
// Inutile de vérifier si la magnitude au carrée est négative (Elle ne peut pas l'être)
|
||||
if (!NzNumberEquals(squaredMagnitude, F(1.0)))
|
||||
{
|
||||
T norm = std::sqrt(squaredMagnitude);
|
||||
T invNorm = F(1.0) / norm;
|
||||
|
||||
w *= invNorm;
|
||||
x *= invNorm;
|
||||
y *= invNorm;
|
||||
z *= invNorm;
|
||||
|
||||
return norm;
|
||||
}
|
||||
else
|
||||
return F(1.0); // Le quaternion est déjà normalisé
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
|
||||
{
|
||||
w = W;
|
||||
x = X;
|
||||
y = Y;
|
||||
z = Z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(T quat[4])
|
||||
{
|
||||
w = quat[0];
|
||||
x = quat[1];
|
||||
y = quat[2];
|
||||
z = quat[3];
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(T angle, const NzVector3<T>& axis)
|
||||
{
|
||||
angle /= F(2.0);
|
||||
|
||||
#if !NAZARA_MATH_ANGLE_RADIAN
|
||||
angle = NzDegreeToRadian(angle);
|
||||
#endif
|
||||
|
||||
NzVector3<T> normalizedAxis = axis.GetNormal();
|
||||
|
||||
T sinAngle = std::sin(angle);
|
||||
|
||||
w = std::cos(angle);
|
||||
x = normalizedAxis.x * sinAngle;
|
||||
y = normalizedAxis.y * sinAngle;
|
||||
z = normalizedAxis.z * sinAngle;
|
||||
|
||||
Normalize();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(const NzEulerAngles<T>& angles)
|
||||
{
|
||||
Set(angles.ToQuaternion());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
void NzQuaternion<T>::Set(const NzQuaternion<U>& quat)
|
||||
{
|
||||
w = static_cast<T>(quat.w);
|
||||
x = static_cast<T>(quat.x);
|
||||
y = static_cast<T>(quat.y);
|
||||
z = static_cast<T>(quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzQuaternion<T>::Set(const NzQuaternion& quat)
|
||||
{
|
||||
w = quat.w;
|
||||
x = quat.x;
|
||||
y = quat.y;
|
||||
z = quat.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::SquaredMagnitude() const
|
||||
{
|
||||
return w*w + x*x + y*y + z*z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
|
||||
{
|
||||
T test = x*y + z*w;
|
||||
if (test > F(0.499))
|
||||
// singularity at north pole
|
||||
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0));
|
||||
|
||||
if (test < F(-0.499))
|
||||
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
|
||||
|
||||
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*x* - F(2.0)*z*z)),
|
||||
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*y*y - F(2.0)*z*z)),
|
||||
NzRadians(std::asin(F(2.0)*test)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzString NzQuaternion<T>::ToString() const
|
||||
{
|
||||
NzStringStream ss;
|
||||
|
||||
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>::operator NzString() const
|
||||
{
|
||||
return ToString();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator=(const NzQuaternion& quat)
|
||||
{
|
||||
Set(quat);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzQuaternion(w + quat.w,
|
||||
x + quat.x,
|
||||
y + quat.y,
|
||||
z + quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzQuaternion(w*quat.w - x*quat.x - y*quat.y - z*quat.z,
|
||||
w*quat.x + x*quat.w + y*quat.z - z*quat.y,
|
||||
w*quat.y + y*quat.w + z*quat.x - x*quat.z,
|
||||
w*quat.z + z*quat.w + x*quat.y - y*quat.x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
|
||||
{
|
||||
NzVector3f quatVec(x, y, z);
|
||||
NzVector3f uv = quatVec.CrossProduct(vec);
|
||||
NzVector3f uuv = quatVec.CrossProduct(uv);
|
||||
uv *= F(2.0) * w;
|
||||
uuv *= F(2.0);
|
||||
|
||||
return vec + uv + uuv;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*(T scale) const
|
||||
{
|
||||
return NzQuaternion(w * scale,
|
||||
x * scale,
|
||||
y * scale,
|
||||
z * scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
|
||||
{
|
||||
return GetConjugate(quat) * (*this);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator+(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator*(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
|
||||
{
|
||||
return operator=(operator*(scale));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator/(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator==(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzNumberEquals(w, quat.w) &&
|
||||
NzNumberEquals(x, quat.x) &&
|
||||
NzNumberEquals(y, quat.y) &&
|
||||
NzNumberEquals(z, quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator!=(const NzQuaternion& quat) const
|
||||
{
|
||||
return !operator==(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator<(const NzQuaternion& quat) const
|
||||
{
|
||||
return w < quat.w && x < quat.x && y < quat.y && z < quat.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator<=(const NzQuaternion& quat) const
|
||||
{
|
||||
return operator<(quat) || operator==(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator>(const NzQuaternion& quat) const
|
||||
{
|
||||
return !operator<=(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzQuaternion<T>::operator>=(const NzQuaternion& quat) const
|
||||
{
|
||||
return !operator<(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Identity()
|
||||
{
|
||||
NzQuaternion quaternion;
|
||||
quaternion.MakeIdentity();
|
||||
|
||||
return quaternion;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
|
||||
{
|
||||
if (interp <= F(0.0))
|
||||
return quatA;
|
||||
|
||||
if (interp >= F(1.0))
|
||||
return quatB;
|
||||
|
||||
NzQuaternion q;
|
||||
|
||||
T cosOmega = quatA.DotProduct(quatB);
|
||||
if (cosOmega < F(0.0))
|
||||
{
|
||||
// On inverse tout
|
||||
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
|
||||
cosOmega = -cosOmega;
|
||||
}
|
||||
else
|
||||
q.Set(quatB);
|
||||
|
||||
T k0, k1;
|
||||
if (cosOmega > F(0.9999))
|
||||
{
|
||||
// Interpolation linéaire pour éviter une division par zéro
|
||||
k0 = F(1.0) - interp;
|
||||
k1 = interp;
|
||||
}
|
||||
else
|
||||
{
|
||||
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
|
||||
T omega = std::atan2(sinOmega, cosOmega);
|
||||
|
||||
// Pour éviter deux divisions
|
||||
sinOmega = F(1.0)/sinOmega;
|
||||
|
||||
k0 = std::sin((F(1.0) - interp) * omega) * sinOmega;
|
||||
k1 = std::sin(interp*omega) * sinOmega;
|
||||
}
|
||||
|
||||
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
|
||||
return result += q*k1;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Zero()
|
||||
{
|
||||
NzQuaternion quaternion;
|
||||
quaternion.MakeZero();
|
||||
|
||||
return quaternion;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat)
|
||||
{
|
||||
return out << quat.ToString();
|
||||
}
|
||||
|
||||
#undef F
|
||||
|
||||
#include <Nazara/Core/DebugOff.hpp>
|
||||
|
||||
@@ -1,104 +1,105 @@
|
||||
// Copyright (C) 2012 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_VECTOR2_HPP
|
||||
#define NAZARA_VECTOR2_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
|
||||
template<typename T> class NzVector2
|
||||
{
|
||||
public:
|
||||
NzVector2();
|
||||
NzVector2(T X, T Y);
|
||||
explicit NzVector2(T scale);
|
||||
NzVector2(T vec[2]);
|
||||
template<typename U> explicit NzVector2(const NzVector2<U>& vec);
|
||||
NzVector2(const NzVector2& vec) = default;
|
||||
~NzVector2() = default;
|
||||
|
||||
T AbsDotProduct(const NzVector2& vec) const;
|
||||
|
||||
T Distance(const NzVector2& vec) const;
|
||||
float Distancef(const NzVector2& vec) const;
|
||||
|
||||
T DotProduct(const NzVector2& vec) const;
|
||||
|
||||
NzVector2 GetNormal() const;
|
||||
|
||||
void MakeCeil(const NzVector2& vec);
|
||||
void MakeFloor(const NzVector2& vec);
|
||||
void MakeUnitX();
|
||||
void MakeUnitY();
|
||||
void MakeZero();
|
||||
|
||||
T Length() const;
|
||||
float Lengthf() const;
|
||||
|
||||
void Normalize();
|
||||
|
||||
void Set(T X, T Y);
|
||||
void Set(T scale);
|
||||
void Set(T vec[2]);
|
||||
template<typename U> void Set(const NzVector2<U>& vec);
|
||||
|
||||
T SquaredDistance(const NzVector2& vec) const;
|
||||
T SquaredLength() const;
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator[](unsigned int i);
|
||||
T operator[](unsigned int i) const;
|
||||
|
||||
const NzVector2& operator+() const;
|
||||
NzVector2 operator-() const;
|
||||
|
||||
NzVector2 operator+(const NzVector2& vec) const;
|
||||
NzVector2 operator-(const NzVector2& vec) const;
|
||||
NzVector2 operator*(const NzVector2& vec) const;
|
||||
NzVector2 operator*(T scale) const;
|
||||
NzVector2 operator/(const NzVector2& vec) const;
|
||||
NzVector2 operator/(T scale) const;
|
||||
|
||||
NzVector2& operator+=(const NzVector2& vec);
|
||||
NzVector2& operator-=(const NzVector2& vec);
|
||||
NzVector2& operator*=(const NzVector2& vec);
|
||||
NzVector2& operator*=(T scale);
|
||||
NzVector2& operator/=(const NzVector2& vec);
|
||||
NzVector2& operator/=(T scale);
|
||||
|
||||
bool operator==(const NzVector2& vec) const;
|
||||
bool operator!=(const NzVector2& vec) const;
|
||||
bool operator<(const NzVector2& vec) const;
|
||||
bool operator<=(const NzVector2& vec) const;
|
||||
bool operator>(const NzVector2& vec) const;
|
||||
bool operator>=(const NzVector2& vec) const;
|
||||
|
||||
static NzVector2 UnitX();
|
||||
static NzVector2 UnitY();
|
||||
static NzVector2 Zero();
|
||||
|
||||
T x, y;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec);
|
||||
|
||||
template<typename T> NzVector2<T> operator*(T scale, const NzVector2<T>& vec);
|
||||
template<typename T> NzVector2<T> operator/(T scale, const NzVector2<T>& vec);
|
||||
|
||||
typedef NzVector2<double> NzVector2d;
|
||||
typedef NzVector2<float> NzVector2f;
|
||||
typedef NzVector2<int> NzVector2i;
|
||||
typedef NzVector2<unsigned int> NzVector2ui;
|
||||
|
||||
#include <Nazara/Math/Vector2.inl>
|
||||
|
||||
#endif // NAZARA_VECTOR2_HPP
|
||||
// Copyright (C) 2012 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_VECTOR2_HPP
|
||||
#define NAZARA_VECTOR2_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
|
||||
template<typename T> class NzVector2
|
||||
{
|
||||
public:
|
||||
NzVector2();
|
||||
NzVector2(T X, T Y);
|
||||
explicit NzVector2(T scale);
|
||||
NzVector2(T vec[2]);
|
||||
template<typename U> explicit NzVector2(const NzVector2<U>& vec);
|
||||
NzVector2(const NzVector2& vec) = default;
|
||||
~NzVector2() = default;
|
||||
|
||||
T AbsDotProduct(const NzVector2& vec) const;
|
||||
|
||||
T Distance(const NzVector2& vec) const;
|
||||
float Distancef(const NzVector2& vec) const;
|
||||
|
||||
T DotProduct(const NzVector2& vec) const;
|
||||
|
||||
NzVector2 GetNormal() const;
|
||||
|
||||
T Length() const;
|
||||
float Lengthf() const;
|
||||
|
||||
void MakeUnitX();
|
||||
void MakeUnitY();
|
||||
void MakeZero();
|
||||
|
||||
void Maximize(const NzVector2& vec);
|
||||
void Minimize(const NzVector2& vec);
|
||||
|
||||
void Normalize();
|
||||
|
||||
void Set(T X, T Y);
|
||||
void Set(T scale);
|
||||
void Set(T vec[2]);
|
||||
template<typename U> void Set(const NzVector2<U>& vec);
|
||||
|
||||
T SquaredDistance(const NzVector2& vec) const;
|
||||
T SquaredLength() const;
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator[](unsigned int i);
|
||||
T operator[](unsigned int i) const;
|
||||
|
||||
const NzVector2& operator+() const;
|
||||
NzVector2 operator-() const;
|
||||
|
||||
NzVector2 operator+(const NzVector2& vec) const;
|
||||
NzVector2 operator-(const NzVector2& vec) const;
|
||||
NzVector2 operator*(const NzVector2& vec) const;
|
||||
NzVector2 operator*(T scale) const;
|
||||
NzVector2 operator/(const NzVector2& vec) const;
|
||||
NzVector2 operator/(T scale) const;
|
||||
|
||||
NzVector2& operator+=(const NzVector2& vec);
|
||||
NzVector2& operator-=(const NzVector2& vec);
|
||||
NzVector2& operator*=(const NzVector2& vec);
|
||||
NzVector2& operator*=(T scale);
|
||||
NzVector2& operator/=(const NzVector2& vec);
|
||||
NzVector2& operator/=(T scale);
|
||||
|
||||
bool operator==(const NzVector2& vec) const;
|
||||
bool operator!=(const NzVector2& vec) const;
|
||||
bool operator<(const NzVector2& vec) const;
|
||||
bool operator<=(const NzVector2& vec) const;
|
||||
bool operator>(const NzVector2& vec) const;
|
||||
bool operator>=(const NzVector2& vec) const;
|
||||
|
||||
static NzVector2 UnitX();
|
||||
static NzVector2 UnitY();
|
||||
static NzVector2 Zero();
|
||||
|
||||
T x, y;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec);
|
||||
|
||||
template<typename T> NzVector2<T> operator*(T scale, const NzVector2<T>& vec);
|
||||
template<typename T> NzVector2<T> operator/(T scale, const NzVector2<T>& vec);
|
||||
|
||||
typedef NzVector2<double> NzVector2d;
|
||||
typedef NzVector2<float> NzVector2f;
|
||||
typedef NzVector2<int> NzVector2i;
|
||||
typedef NzVector2<unsigned int> NzVector2ui;
|
||||
|
||||
#include <Nazara/Math/Vector2.inl>
|
||||
|
||||
#endif // NAZARA_VECTOR2_HPP
|
||||
|
||||
@@ -1,488 +1,488 @@
|
||||
// Copyright (C) 2012 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#include <Nazara/Core/StringStream.hpp>
|
||||
#include <Nazara/Math/Basic.hpp>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
#include <Nazara/Core/Debug.hpp>
|
||||
|
||||
#define F(a) static_cast<T>(a)
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2()
|
||||
{
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2(T X, T Y)
|
||||
{
|
||||
Set(X, Y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2(T scale)
|
||||
{
|
||||
Set(scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2(T vec[2])
|
||||
{
|
||||
Set(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzVector2<T>::NzVector2(const NzVector2<U>& vec)
|
||||
{
|
||||
Set(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::AbsDotProduct(const NzVector2& vec) const
|
||||
{
|
||||
return std::fabs(x * vec.x) + std::fabs(y * vec.y);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline int NzVector2<int>::AbsDotProduct(const NzVector2<int>& vec) const
|
||||
{
|
||||
return std::labs(x * vec.x) + std::labs(y * vec.y);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline unsigned int NzVector2<unsigned int>::AbsDotProduct(const NzVector2<unsigned int>& vec) const
|
||||
{
|
||||
return std::labs(x * vec.x) + std::labs(y * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::Distance(const NzVector2& vec) const
|
||||
{
|
||||
return std::sqrt(SquaredDistance(vec));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
float NzVector2<T>::Distancef(const NzVector2& vec) const
|
||||
{
|
||||
return std::sqrt(static_cast<float>(SquaredDistance(vec)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::DotProduct(const NzVector2& vec) const
|
||||
{
|
||||
return x*vec.x + y*vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::GetNormal() const
|
||||
{
|
||||
NzVector2 vec(*this);
|
||||
vec.Normalize();
|
||||
|
||||
return vec;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::Length() const
|
||||
{
|
||||
return std::sqrt(SquaredLength());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
float NzVector2<T>::Lengthf() const
|
||||
{
|
||||
return std::sqrt(static_cast<float>(SquaredLength()));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeCeil(const NzVector2& vec)
|
||||
{
|
||||
if (vec.x > x)
|
||||
x = vec.x;
|
||||
|
||||
if (vec.y > y)
|
||||
y = vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeFloor(const NzVector2& vec)
|
||||
{
|
||||
if (vec.x < x)
|
||||
x = vec.x;
|
||||
|
||||
if (vec.y < y)
|
||||
y = vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeUnitX()
|
||||
{
|
||||
Set(F(1.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeUnitY()
|
||||
{
|
||||
Set(F(0.0), F(1.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeZero()
|
||||
{
|
||||
Set(F(0.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Normalize()
|
||||
{
|
||||
T squaredLength = SquaredLength();
|
||||
|
||||
if (squaredLength-F(1.0) > std::numeric_limits<T>::epsilon())
|
||||
{
|
||||
T length = std::sqrt(squaredLength);
|
||||
|
||||
x /= length;
|
||||
y /= length;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Set(T X, T Y)
|
||||
{
|
||||
x = X;
|
||||
y = Y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Set(T scale)
|
||||
{
|
||||
x = scale;
|
||||
y = scale;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Set(T vec[2])
|
||||
{
|
||||
std::memcpy(&x, vec, 2*sizeof(T));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
void NzVector2<T>::Set(const NzVector2<U>& vec)
|
||||
{
|
||||
x = F(vec.x);
|
||||
y = F(vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::SquaredDistance(const NzVector2& vec) const
|
||||
{
|
||||
return operator-(vec).SquaredLength();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::SquaredLength() const
|
||||
{
|
||||
return x*x + y*y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzString NzVector2<T>::ToString() const
|
||||
{
|
||||
NzStringStream ss;
|
||||
|
||||
return ss << "Vector2(" << x << ", " << y << ')';
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::operator NzString() const
|
||||
{
|
||||
return ToString();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::operator T*()
|
||||
{
|
||||
return &x;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::operator const T*() const
|
||||
{
|
||||
return &x;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T& NzVector2<T>::operator[](unsigned int i)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (i >= 2)
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return *(&x+i);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::operator[](unsigned int i) const
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (i >= 2)
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return *(&x+i);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
const NzVector2<T>& NzVector2<T>::operator+() const
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator-() const
|
||||
{
|
||||
return NzVector2(-x, -y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator+(const NzVector2& vec) const
|
||||
{
|
||||
return NzVector2(x + vec.x, y + vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator-(const NzVector2& vec) const
|
||||
{
|
||||
return NzVector2(x - vec.x, y - vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator*(const NzVector2& vec) const
|
||||
{
|
||||
return NzVector2(x * vec.x, y * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator*(T scale) const
|
||||
{
|
||||
return NzVector2(x * scale, y * scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator/(const NzVector2& vec) const
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return NzVector2(x / vec.x, y / vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator/(T scale) const
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(scale, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return NzVector2(x / scale, y / scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator+=(const NzVector2& vec)
|
||||
{
|
||||
x += vec.x;
|
||||
y += vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator-=(const NzVector2& vec)
|
||||
{
|
||||
x -= vec.x;
|
||||
y -= vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator*=(const NzVector2& vec)
|
||||
{
|
||||
x *= vec.x;
|
||||
y *= vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator*=(T scale)
|
||||
{
|
||||
x *= scale;
|
||||
y *= scale;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator/=(const NzVector2& vec)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
x /= vec.x;
|
||||
y /= vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator/=(T scale)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(scale, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
x /= scale;
|
||||
y /= scale;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator==(const NzVector2& vec) const
|
||||
{
|
||||
return NzNumberEquals(x, vec.x) &&
|
||||
NzNumberEquals(y, vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator!=(const NzVector2& vec) const
|
||||
{
|
||||
return !operator==(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator<(const NzVector2& vec) const
|
||||
{
|
||||
return x < vec.x && y < vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator<=(const NzVector2& vec) const
|
||||
{
|
||||
return operator<(vec) || operator==(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator>(const NzVector2& vec) const
|
||||
{
|
||||
return !operator<=(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator>=(const NzVector2& vec) const
|
||||
{
|
||||
return !operator<(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::UnitX()
|
||||
{
|
||||
NzVector2 vector;
|
||||
vector.MakeUnitX();
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::UnitY()
|
||||
{
|
||||
NzVector2 vector;
|
||||
vector.MakeUnitY();
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::Zero()
|
||||
{
|
||||
NzVector2 vector;
|
||||
vector.MakeZero();
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec)
|
||||
{
|
||||
return out << vec.ToString();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> operator*(T scale, const NzVector2<T>& vec)
|
||||
{
|
||||
return NzVector2<T>(scale * vec.x, scale * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> operator/(T scale, const NzVector2<T>& vec)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return NzVector2<T>(scale/vec.x, scale/vec.y);
|
||||
}
|
||||
|
||||
#undef F
|
||||
|
||||
#include <Nazara/Core/DebugOff.hpp>
|
||||
// Copyright (C) 2012 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#include <Nazara/Core/StringStream.hpp>
|
||||
#include <Nazara/Math/Basic.hpp>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
#include <Nazara/Core/Debug.hpp>
|
||||
|
||||
#define F(a) static_cast<T>(a)
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2()
|
||||
{
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2(T X, T Y)
|
||||
{
|
||||
Set(X, Y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2(T scale)
|
||||
{
|
||||
Set(scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::NzVector2(T vec[2])
|
||||
{
|
||||
Set(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzVector2<T>::NzVector2(const NzVector2<U>& vec)
|
||||
{
|
||||
Set(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::AbsDotProduct(const NzVector2& vec) const
|
||||
{
|
||||
return std::fabs(x * vec.x) + std::fabs(y * vec.y);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline int NzVector2<int>::AbsDotProduct(const NzVector2<int>& vec) const
|
||||
{
|
||||
return std::labs(x * vec.x) + std::labs(y * vec.y);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline unsigned int NzVector2<unsigned int>::AbsDotProduct(const NzVector2<unsigned int>& vec) const
|
||||
{
|
||||
return std::labs(x * vec.x) + std::labs(y * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::Distance(const NzVector2& vec) const
|
||||
{
|
||||
return std::sqrt(SquaredDistance(vec));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
float NzVector2<T>::Distancef(const NzVector2& vec) const
|
||||
{
|
||||
return std::sqrt(static_cast<float>(SquaredDistance(vec)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::DotProduct(const NzVector2& vec) const
|
||||
{
|
||||
return x*vec.x + y*vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::GetNormal() const
|
||||
{
|
||||
NzVector2 vec(*this);
|
||||
vec.Normalize();
|
||||
|
||||
return vec;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::Length() const
|
||||
{
|
||||
return std::sqrt(SquaredLength());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
float NzVector2<T>::Lengthf() const
|
||||
{
|
||||
return std::sqrt(static_cast<float>(SquaredLength()));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeUnitX()
|
||||
{
|
||||
Set(F(1.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeUnitY()
|
||||
{
|
||||
Set(F(0.0), F(1.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::MakeZero()
|
||||
{
|
||||
Set(F(0.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Maximize(const NzVector2& vec)
|
||||
{
|
||||
if (vec.x > x)
|
||||
x = vec.x;
|
||||
|
||||
if (vec.y > y)
|
||||
y = vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Minimize(const NzVector2& vec)
|
||||
{
|
||||
if (vec.x < x)
|
||||
x = vec.x;
|
||||
|
||||
if (vec.y < y)
|
||||
y = vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Normalize()
|
||||
{
|
||||
T squaredLength = SquaredLength();
|
||||
|
||||
if (squaredLength-F(1.0) > std::numeric_limits<T>::epsilon())
|
||||
{
|
||||
T length = std::sqrt(squaredLength);
|
||||
|
||||
x /= length;
|
||||
y /= length;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Set(T X, T Y)
|
||||
{
|
||||
x = X;
|
||||
y = Y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Set(T scale)
|
||||
{
|
||||
x = scale;
|
||||
y = scale;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void NzVector2<T>::Set(T vec[2])
|
||||
{
|
||||
std::memcpy(&x, vec, 2*sizeof(T));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
void NzVector2<T>::Set(const NzVector2<U>& vec)
|
||||
{
|
||||
x = F(vec.x);
|
||||
y = F(vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::SquaredDistance(const NzVector2& vec) const
|
||||
{
|
||||
return operator-(vec).SquaredLength();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::SquaredLength() const
|
||||
{
|
||||
return x*x + y*y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzString NzVector2<T>::ToString() const
|
||||
{
|
||||
NzStringStream ss;
|
||||
|
||||
return ss << "Vector2(" << x << ", " << y << ')';
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::operator NzString() const
|
||||
{
|
||||
return ToString();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::operator T*()
|
||||
{
|
||||
return &x;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>::operator const T*() const
|
||||
{
|
||||
return &x;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T& NzVector2<T>::operator[](unsigned int i)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (i >= 2)
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return *(&x+i);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::operator[](unsigned int i) const
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (i >= 2)
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return *(&x+i);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
const NzVector2<T>& NzVector2<T>::operator+() const
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator-() const
|
||||
{
|
||||
return NzVector2(-x, -y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator+(const NzVector2& vec) const
|
||||
{
|
||||
return NzVector2(x + vec.x, y + vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator-(const NzVector2& vec) const
|
||||
{
|
||||
return NzVector2(x - vec.x, y - vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator*(const NzVector2& vec) const
|
||||
{
|
||||
return NzVector2(x * vec.x, y * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator*(T scale) const
|
||||
{
|
||||
return NzVector2(x * scale, y * scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator/(const NzVector2& vec) const
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return NzVector2(x / vec.x, y / vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::operator/(T scale) const
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(scale, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return NzVector2(x / scale, y / scale);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator+=(const NzVector2& vec)
|
||||
{
|
||||
x += vec.x;
|
||||
y += vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator-=(const NzVector2& vec)
|
||||
{
|
||||
x -= vec.x;
|
||||
y -= vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator*=(const NzVector2& vec)
|
||||
{
|
||||
x *= vec.x;
|
||||
y *= vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator*=(T scale)
|
||||
{
|
||||
x *= scale;
|
||||
y *= scale;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator/=(const NzVector2& vec)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
x /= vec.x;
|
||||
y /= vec.y;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T>& NzVector2<T>::operator/=(T scale)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(scale, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
x /= scale;
|
||||
y /= scale;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator==(const NzVector2& vec) const
|
||||
{
|
||||
return NzNumberEquals(x, vec.x) &&
|
||||
NzNumberEquals(y, vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator!=(const NzVector2& vec) const
|
||||
{
|
||||
return !operator==(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator<(const NzVector2& vec) const
|
||||
{
|
||||
return x < vec.x && y < vec.y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator<=(const NzVector2& vec) const
|
||||
{
|
||||
return operator<(vec) || operator==(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator>(const NzVector2& vec) const
|
||||
{
|
||||
return !operator<=(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzVector2<T>::operator>=(const NzVector2& vec) const
|
||||
{
|
||||
return !operator<(vec);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::UnitX()
|
||||
{
|
||||
NzVector2 vector;
|
||||
vector.MakeUnitX();
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::UnitY()
|
||||
{
|
||||
NzVector2 vector;
|
||||
vector.MakeUnitY();
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> NzVector2<T>::Zero()
|
||||
{
|
||||
NzVector2 vector;
|
||||
vector.MakeZero();
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec)
|
||||
{
|
||||
return out << vec.ToString();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> operator*(T scale, const NzVector2<T>& vec)
|
||||
{
|
||||
return NzVector2<T>(scale * vec.x, scale * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector2<T> operator/(T scale, const NzVector2<T>& vec)
|
||||
{
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
||||
{
|
||||
NzStringStream ss;
|
||||
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
|
||||
|
||||
throw std::domain_error(ss.ToString());
|
||||
}
|
||||
#endif
|
||||
|
||||
return NzVector2<T>(scale/vec.x, scale/vec.y);
|
||||
}
|
||||
|
||||
#undef F
|
||||
|
||||
#include <Nazara/Core/DebugOff.hpp>
|
||||
|
||||
@@ -1,111 +1,121 @@
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_VECTOR3_HPP
|
||||
#define NAZARA_VECTOR3_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Vector2.hpp>
|
||||
|
||||
template<typename T> class NzVector3
|
||||
{
|
||||
public:
|
||||
NzVector3();
|
||||
NzVector3(T X, T Y, T Z);
|
||||
explicit NzVector3(T scale);
|
||||
NzVector3(T vec[3]);
|
||||
NzVector3(const NzVector2<T>& vec, T Z = 0.0);
|
||||
template<typename U> explicit NzVector3(const NzVector3<U>& vec);
|
||||
NzVector3(const NzVector3& vec) = default;
|
||||
~NzVector3() = default;
|
||||
|
||||
T AbsDotProduct(const NzVector3& vec) const;
|
||||
|
||||
NzVector3 CrossProduct(const NzVector3& vec) const;
|
||||
|
||||
T Distance(const NzVector3& vec) const;
|
||||
float Distancef(const NzVector3& vec) const;
|
||||
|
||||
T DotProduct(const NzVector3& vec) const;
|
||||
|
||||
NzVector3 GetNormal() const;
|
||||
|
||||
T Length() const;
|
||||
float Lengthf() const;
|
||||
|
||||
void MakeCeil(const NzVector3& vec);
|
||||
void MakeFloor(const NzVector3& vec);
|
||||
void MakeUnitX();
|
||||
void MakeUnitY();
|
||||
void MakeUnitZ();
|
||||
void MakeZero();
|
||||
|
||||
void Normalize();
|
||||
|
||||
void Set(T X, T Y, T Z);
|
||||
void Set(T scale);
|
||||
void Set(T vec[3]);
|
||||
void Set(const NzVector2<T>& vec, T Z = 0.0);
|
||||
template<typename U> void Set(const NzVector3<U>& vec);
|
||||
|
||||
T SquaredDistance(const NzVector3& vec) const;
|
||||
T SquaredLength() const;
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator[](unsigned int i);
|
||||
T operator[](unsigned int i) const;
|
||||
|
||||
const NzVector3& operator+() const;
|
||||
NzVector3 operator-() const;
|
||||
|
||||
NzVector3 operator+(const NzVector3& vec) const;
|
||||
NzVector3 operator-(const NzVector3& vec) const;
|
||||
NzVector3 operator*(const NzVector3& vec) const;
|
||||
NzVector3 operator*(T scale) const;
|
||||
NzVector3 operator/(const NzVector3& vec) const;
|
||||
NzVector3 operator/(T scale) const;
|
||||
|
||||
NzVector3& operator+=(const NzVector3& vec);
|
||||
NzVector3& operator-=(const NzVector3& vec);
|
||||
NzVector3& operator*=(const NzVector3& vec);
|
||||
NzVector3& operator*=(T scale);
|
||||
NzVector3& operator/=(const NzVector3& vec);
|
||||
NzVector3& operator/=(T scale);
|
||||
|
||||
bool operator==(const NzVector3& vec) const;
|
||||
bool operator!=(const NzVector3& vec) const;
|
||||
bool operator<(const NzVector3& vec) const;
|
||||
bool operator<=(const NzVector3& vec) const;
|
||||
bool operator>(const NzVector3& vec) const;
|
||||
bool operator>=(const NzVector3& vec) const;
|
||||
|
||||
static NzVector3 UnitX();
|
||||
static NzVector3 UnitY();
|
||||
static NzVector3 UnitZ();
|
||||
static NzVector3 Zero();
|
||||
|
||||
T x, y, z;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector3<T>& vec);
|
||||
|
||||
template<typename T> NzVector3<T> operator*(T scale, const NzVector3<T>& vec);
|
||||
template<typename T> NzVector3<T> operator/(T scale, const NzVector3<T>& vec);
|
||||
|
||||
typedef NzVector3<double> NzVector3d;
|
||||
typedef NzVector3<float> NzVector3f;
|
||||
typedef NzVector3<int> NzVector3i;
|
||||
typedef NzVector3<unsigned int> NzVector3ui;
|
||||
|
||||
#include <Nazara/Math/Vector3.inl>
|
||||
|
||||
#endif // NAZARA_VECTOR3_HPP
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_VECTOR3_HPP
|
||||
#define NAZARA_VECTOR3_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Vector2.hpp>
|
||||
|
||||
template<typename T> class NzVector3
|
||||
{
|
||||
public:
|
||||
NzVector3();
|
||||
NzVector3(T X, T Y, T Z);
|
||||
explicit NzVector3(T scale);
|
||||
NzVector3(T vec[3]);
|
||||
NzVector3(const NzVector2<T>& vec, T Z = 0.0);
|
||||
template<typename U> explicit NzVector3(const NzVector3<U>& vec);
|
||||
NzVector3(const NzVector3& vec) = default;
|
||||
~NzVector3() = default;
|
||||
|
||||
T AbsDotProduct(const NzVector3& vec) const;
|
||||
|
||||
NzVector3 CrossProduct(const NzVector3& vec) const;
|
||||
|
||||
T Distance(const NzVector3& vec) const;
|
||||
float Distancef(const NzVector3& vec) const;
|
||||
|
||||
T DotProduct(const NzVector3& vec) const;
|
||||
|
||||
NzVector3 GetNormal() const;
|
||||
|
||||
T Length() const;
|
||||
float Lengthf() const;
|
||||
|
||||
void MakeForward();
|
||||
void MakeLeft();
|
||||
void MakeUnitX();
|
||||
void MakeUnitY();
|
||||
void MakeUnitZ();
|
||||
void MakeUp();
|
||||
void MakeZero();
|
||||
|
||||
void Maximize(const NzVector3& vec);
|
||||
void Minimize(const NzVector3& vec);
|
||||
|
||||
void Normalize();
|
||||
|
||||
void Set(T X, T Y, T Z);
|
||||
void Set(T scale);
|
||||
void Set(T vec[3]);
|
||||
void Set(const NzVector2<T>& vec, T Z = 0.0);
|
||||
template<typename U> void Set(const NzVector3<U>& vec);
|
||||
|
||||
T SquaredDistance(const NzVector3& vec) const;
|
||||
T SquaredLength() const;
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator[](unsigned int i);
|
||||
T operator[](unsigned int i) const;
|
||||
|
||||
const NzVector3& operator+() const;
|
||||
NzVector3 operator-() const;
|
||||
|
||||
NzVector3 operator+(const NzVector3& vec) const;
|
||||
NzVector3 operator-(const NzVector3& vec) const;
|
||||
NzVector3 operator*(const NzVector3& vec) const;
|
||||
NzVector3 operator*(T scale) const;
|
||||
NzVector3 operator/(const NzVector3& vec) const;
|
||||
NzVector3 operator/(T scale) const;
|
||||
|
||||
NzVector3& operator+=(const NzVector3& vec);
|
||||
NzVector3& operator-=(const NzVector3& vec);
|
||||
NzVector3& operator*=(const NzVector3& vec);
|
||||
NzVector3& operator*=(T scale);
|
||||
NzVector3& operator/=(const NzVector3& vec);
|
||||
NzVector3& operator/=(T scale);
|
||||
|
||||
bool operator==(const NzVector3& vec) const;
|
||||
bool operator!=(const NzVector3& vec) const;
|
||||
bool operator<(const NzVector3& vec) const;
|
||||
bool operator<=(const NzVector3& vec) const;
|
||||
bool operator>(const NzVector3& vec) const;
|
||||
bool operator>=(const NzVector3& vec) const;
|
||||
|
||||
static NzVector3 CrossProduct(const NzVector3& vec1, const NzVector3& vec2);
|
||||
static T DotProduct(const NzVector3& vec1, const NzVector3& vec2);
|
||||
static NzVector3 Forward();
|
||||
static NzVector3 Left();
|
||||
static NzVector3 Normalize(const NzVector3& vec);
|
||||
static NzVector3 UnitX();
|
||||
static NzVector3 UnitY();
|
||||
static NzVector3 UnitZ();
|
||||
static NzVector3 Up();
|
||||
static NzVector3 Zero();
|
||||
|
||||
T x, y, z;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector3<T>& vec);
|
||||
|
||||
template<typename T> NzVector3<T> operator*(T scale, const NzVector3<T>& vec);
|
||||
template<typename T> NzVector3<T> operator/(T scale, const NzVector3<T>& vec);
|
||||
|
||||
typedef NzVector3<double> NzVector3d;
|
||||
typedef NzVector3<float> NzVector3f;
|
||||
typedef NzVector3<int> NzVector3i;
|
||||
typedef NzVector3<unsigned int> NzVector3ui;
|
||||
|
||||
#include <Nazara/Math/Vector3.inl>
|
||||
|
||||
#endif // NAZARA_VECTOR3_HPP
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,97 +1,98 @@
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_VECTOR4_HPP
|
||||
#define NAZARA_VECTOR4_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Vector3.hpp>
|
||||
|
||||
template<typename T> class NzVector4
|
||||
{
|
||||
public:
|
||||
NzVector4();
|
||||
NzVector4(T X, T Y, T Z, T W = 1.0);
|
||||
explicit NzVector4(T scale);
|
||||
NzVector4(T vec[4]);
|
||||
NzVector4(const NzVector3<T>& vec, T W = 1.0);
|
||||
template<typename U> explicit NzVector4(const NzVector4<U>& vec);
|
||||
NzVector4(const NzVector4& vec) = default;
|
||||
~NzVector4() = default;
|
||||
|
||||
T AbsDotProduct(const NzVector4& vec) const;
|
||||
|
||||
T DotProduct(const NzVector4& vec) const;
|
||||
|
||||
void MakeCeil(const NzVector4& vec);
|
||||
void MakeFloor(const NzVector4& vec);
|
||||
void MakeUnitX();
|
||||
void MakeUnitY();
|
||||
void MakeUnitZ();
|
||||
void MakeZero();
|
||||
|
||||
void Normalize();
|
||||
|
||||
void Set(T X, T Y, T Z, T W = 1.0);
|
||||
void Set(T scale);
|
||||
void Set(T vec[4]);
|
||||
void Set(const NzVector3<T>& vec, T W = 1.0);
|
||||
template<typename U> void Set(const NzVector4<U>& vec);
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator[](unsigned int i);
|
||||
T operator[](unsigned int i) const;
|
||||
|
||||
const NzVector4& operator+() const;
|
||||
NzVector4 operator-() const;
|
||||
|
||||
NzVector4 operator+(const NzVector4& vec) const;
|
||||
NzVector4 operator-(const NzVector4& vec) const;
|
||||
NzVector4 operator*(const NzVector4& vec) const;
|
||||
NzVector4 operator*(T scale) const;
|
||||
NzVector4 operator/(const NzVector4& vec) const;
|
||||
NzVector4 operator/(T scale) const;
|
||||
|
||||
NzVector4& operator+=(const NzVector4& vec);
|
||||
NzVector4& operator-=(const NzVector4& vec);
|
||||
NzVector4& operator*=(const NzVector4& vec);
|
||||
NzVector4& operator*=(T scale);
|
||||
NzVector4& operator/=(const NzVector4& vec);
|
||||
NzVector4& operator/=(T scale);
|
||||
|
||||
bool operator==(const NzVector4& vec) const;
|
||||
bool operator!=(const NzVector4& vec) const;
|
||||
bool operator<(const NzVector4& vec) const;
|
||||
bool operator<=(const NzVector4& vec) const;
|
||||
bool operator>(const NzVector4& vec) const;
|
||||
bool operator>=(const NzVector4& vec) const;
|
||||
|
||||
static NzVector4 UnitX();
|
||||
static NzVector4 UnitY();
|
||||
static NzVector4 UnitZ();
|
||||
static NzVector4 Zero();
|
||||
|
||||
T x, y, z, w;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector4<T>& vec);
|
||||
|
||||
template<typename T> NzVector4<T> operator*(T scale, const NzVector4<T>& vec);
|
||||
template<typename T> NzVector4<T> operator/(T scale, const NzVector4<T>& vec);
|
||||
|
||||
typedef NzVector4<double> NzVector4d;
|
||||
typedef NzVector4<float> NzVector4f;
|
||||
typedef NzVector4<int> NzVector4i;
|
||||
|
||||
#include <Nazara/Math/Vector4.inl>
|
||||
|
||||
#endif // NAZARA_VECTOR4_HPP
|
||||
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_VECTOR4_HPP
|
||||
#define NAZARA_VECTOR4_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Vector3.hpp>
|
||||
|
||||
template<typename T> class NzVector4
|
||||
{
|
||||
public:
|
||||
NzVector4();
|
||||
NzVector4(T X, T Y, T Z, T W = 1.0);
|
||||
explicit NzVector4(T scale);
|
||||
NzVector4(T vec[4]);
|
||||
NzVector4(const NzVector3<T>& vec, T W = 1.0);
|
||||
template<typename U> explicit NzVector4(const NzVector4<U>& vec);
|
||||
NzVector4(const NzVector4& vec) = default;
|
||||
~NzVector4() = default;
|
||||
|
||||
T AbsDotProduct(const NzVector4& vec) const;
|
||||
|
||||
T DotProduct(const NzVector4& vec) const;
|
||||
|
||||
void MakeUnitX();
|
||||
void MakeUnitY();
|
||||
void MakeUnitZ();
|
||||
void MakeZero();
|
||||
|
||||
void Maximize(const NzVector4& vec);
|
||||
void Minimize(const NzVector4& vec);
|
||||
|
||||
void Normalize();
|
||||
|
||||
void Set(T X, T Y, T Z, T W = 1.0);
|
||||
void Set(T scale);
|
||||
void Set(T vec[4]);
|
||||
void Set(const NzVector3<T>& vec, T W = 1.0);
|
||||
template<typename U> void Set(const NzVector4<U>& vec);
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
operator NzString() const;
|
||||
|
||||
operator T*();
|
||||
operator const T*() const;
|
||||
|
||||
T& operator[](unsigned int i);
|
||||
T operator[](unsigned int i) const;
|
||||
|
||||
const NzVector4& operator+() const;
|
||||
NzVector4 operator-() const;
|
||||
|
||||
NzVector4 operator+(const NzVector4& vec) const;
|
||||
NzVector4 operator-(const NzVector4& vec) const;
|
||||
NzVector4 operator*(const NzVector4& vec) const;
|
||||
NzVector4 operator*(T scale) const;
|
||||
NzVector4 operator/(const NzVector4& vec) const;
|
||||
NzVector4 operator/(T scale) const;
|
||||
|
||||
NzVector4& operator+=(const NzVector4& vec);
|
||||
NzVector4& operator-=(const NzVector4& vec);
|
||||
NzVector4& operator*=(const NzVector4& vec);
|
||||
NzVector4& operator*=(T scale);
|
||||
NzVector4& operator/=(const NzVector4& vec);
|
||||
NzVector4& operator/=(T scale);
|
||||
|
||||
bool operator==(const NzVector4& vec) const;
|
||||
bool operator!=(const NzVector4& vec) const;
|
||||
bool operator<(const NzVector4& vec) const;
|
||||
bool operator<=(const NzVector4& vec) const;
|
||||
bool operator>(const NzVector4& vec) const;
|
||||
bool operator>=(const NzVector4& vec) const;
|
||||
|
||||
static NzVector4 UnitX();
|
||||
static NzVector4 UnitY();
|
||||
static NzVector4 UnitZ();
|
||||
static NzVector4 Zero();
|
||||
|
||||
T x, y, z, w;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector4<T>& vec);
|
||||
|
||||
template<typename T> NzVector4<T> operator*(T scale, const NzVector4<T>& vec);
|
||||
template<typename T> NzVector4<T> operator/(T scale, const NzVector4<T>& vec);
|
||||
|
||||
typedef NzVector4<double> NzVector4d;
|
||||
typedef NzVector4<float> NzVector4f;
|
||||
typedef NzVector4<int> NzVector4i;
|
||||
|
||||
#include <Nazara/Math/Vector4.inl>
|
||||
|
||||
#endif // NAZARA_VECTOR4_HPP
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user