Added RenderTextures (And many others things)

-Added Forward, left and up vector (Vector3)
-Added Matrix4::ConcatenateAffine shortcut
-Added Quaternion::GetInverse() and Quaternion::Inverse()
-Added Resource listeners
-Added Depth and stencil pixel formats
-All enums now have an ending "max" entry
-Animation/Mesh::Add[Sequence/Skin/SubMesh] now returns a boolean
-Contexts are now resources
-Enhanced AnimatedMesh demo
-Fixed MD2 facing
-Fixed Vector3::CrossProduct
-Made Resource thread-safe
-Made OpenGL translation table global
-Many bugfixes
-MLT will now write malloc failure to the log
-Most of the strcpy were replaced with faster memcpy
-Occlusion queries availability is now always tested
-OpenGL-related includes now requires NAZARA_RENDERER_OPENGL to be
defined to have any effect
-Pixel formats now have a type
-Renamed RenderTarget::IsValid to IsRenderable
-Renamed Quaternion::GetNormalized() to GetNormal()
-Renamed Texture::Bind() to Prepare()
-Renamed VectorX::Make[Ceil|Floor] to Maximize/Minimize
-Removed MATH_MATRIX_COLUMN_MAJOR option (all matrices are column-major)
-Removed RENDERER_ACTIVATE_RENDERWINDOW_ON_CREATION option (Render
windows are active upon their creation)


Former-commit-id: 0d1da1e32c156a958221edf04a5315c75b354450
This commit is contained in:
Jérôme Leclercq
2012-09-20 22:07:30 +02:00
parent a6ed70123b
commit cd5a1b7a5e
65 changed files with 24385 additions and 22703 deletions

View File

@@ -1,52 +1,49 @@
/*
Nazara Engine - Mathematics module
Copyright (C) 2012 Jérôme "Lynix" Leclercq (Lynix680@gmail.com)
Rémi "overdrivr" Bèges (remi.beges@laposte.net)
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#pragma once
#ifndef NAZARA_CONFIG_MATH_HPP
#define NAZARA_CONFIG_MATH_HPP
/// Chaque modification d'un paramètre du module nécessite une recompilation de celui-ci
// Définit le radian comme l'unité utilisée pour les angles
#define NAZARA_MATH_ANGLE_RADIAN 0
// Définit la disposition des matrices en colonnes (Façon OpenGL)
#define NAZARA_MATH_MATRIX_COLUMN_MAJOR 1
// Optimise les opérations entre matrices affines (Demande plusieurs comparaisons pour déterminer si une matrice est affine)
#define NAZARA_MATH_MATRIX4_CHECK_AFFINE 0
// Active les tests de sécurité basés sur le code (Conseillé pour le développement)
#define NAZARA_MATH_SAFE 1
// Protège les classes des accès concurrentiels
#define NAZARA_MATH_THREADSAFE 1
// Les classes à protéger des accès concurrentiels
#define NAZARA_THREADSAFETY_MATRIX3 1 // NzMatrix3 (COW)
#define NAZARA_THREADSAFETY_MATRIX4 1 // NzMatrix4 (COW)
#endif // NAZARA_CONFIG_MATH_HPP
/*
Nazara Engine - Mathematics module
Copyright (C) 2012 Jérôme "Lynix" Leclercq (Lynix680@gmail.com)
Rémi "overdrivr" Bèges (remi.beges@laposte.net)
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#pragma once
#ifndef NAZARA_CONFIG_MATH_HPP
#define NAZARA_CONFIG_MATH_HPP
/// Chaque modification d'un paramètre du module nécessite une recompilation de celui-ci
// Définit le radian comme l'unité utilisée pour les angles
#define NAZARA_MATH_ANGLE_RADIAN 0
// Optimise les opérations entre matrices affines (Demande plusieurs comparaisons pour déterminer si une matrice est affine)
#define NAZARA_MATH_MATRIX4_CHECK_AFFINE 0
// Active les tests de sécurité basés sur le code (Conseillé pour le développement)
#define NAZARA_MATH_SAFE 1
// Protège les classes des accès concurrentiels
#define NAZARA_MATH_THREADSAFE 1
// Les classes à protéger des accès concurrentiels
#define NAZARA_THREADSAFETY_MATRIX3 1 // NzMatrix3 (COW)
#define NAZARA_THREADSAFETY_MATRIX4 1 // NzMatrix4 (COW)
#endif // NAZARA_CONFIG_MATH_HPP

View File

@@ -1,144 +1,145 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_MATRIX4_HPP
#define NAZARA_MATRIX4_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Config.hpp>
#if NAZARA_MATH_THREADSAFE && NAZARA_THREADSAFETY_MATRIX4
#include <Nazara/Core/ThreadSafety.hpp>
#else
#include <Nazara/Core/ThreadSafetyOff.hpp>
#endif
template<typename T> class NzEulerAngles;
template<typename T> class NzQuaternion;
template<typename T> class NzVector2;
template<typename T> class NzVector3;
template<typename T> class NzVector4;
template<typename T> class NzMatrix4
{
public:
NzMatrix4();
NzMatrix4(T r11, T r12, T r13, T r14,
T r21, T r22, T r23, T r24,
T r31, T r32, T r33, T r34,
T r41, T r42, T r43, T r44);
NzMatrix4(const T matrix[16]);
//NzMatrix4(const NzMatrix3<T>& matrix);
template<typename U> explicit NzMatrix4(const NzMatrix4<U>& matrix);
NzMatrix4(const NzMatrix4& matrix);
NzMatrix4(NzMatrix4&& matrix) noexcept;
~NzMatrix4();
NzMatrix4 Concatenate(const NzMatrix4& matrix) const;
T GetDeterminant() const;
NzMatrix4 GetInverse() const;
NzQuaternion<T> GetRotation() const;
//NzMatrix3 GetRotationMatrix() const;
NzVector3<T> GetScale() const;
NzVector3<T> GetTranslation() const;
NzMatrix4 GetTransposed() const;
bool HasNegativeScale() const;
bool HasScale() const;
bool IsAffine() const;
bool IsDefined() const;
void MakeIdentity();
void MakeLookAt(const NzVector3<T>& eye, const NzVector3<T>& center, const NzVector3<T>& up);
void MakeOrtho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
void MakePerspective(T angle, T ratio, T zNear, T zFar);
void MakeRotation(const NzQuaternion<T>& rotation);
void MakeScale(const NzVector3<T>& scale);
void MakeTranslation(const NzVector3<T>& translation);
void MakeZero();
void Set(T r11, T r12, T r13, T r14,
T r21, T r22, T r23, T r24,
T r31, T r32, T r33, T r34,
T r41, T r42, T r43, T r44);
void Set(const T matrix[16]);
//NzMatrix4(const NzMatrix3<T>& matrix);
void Set(const NzMatrix4& matrix);
void Set(NzMatrix4&& matrix);
template<typename U> void Set(const NzMatrix4<U>& matrix);
void SetRotation(const NzQuaternion<T>& rotation);
void SetScale(const NzVector3<T>& scale);
void SetTranslation(const NzVector3<T>& translation);
NzString ToString() const;
NzVector2<T> Transform(const NzVector2<T>& vector, T z = 0.0, T w = 1.0) const;
NzVector3<T> Transform(const NzVector3<T>& vector, T w = 1.0) const;
NzVector4<T> Transform(const NzVector4<T>& vector) const;
NzMatrix4& Transpose();
operator NzString() const;
operator T*();
operator const T*() const;
T& operator()(unsigned int x, unsigned int y);
const T& operator()(unsigned int x, unsigned int y) const;
NzMatrix4& operator=(const NzMatrix4& matrix);
NzMatrix4& operator=(NzMatrix4&& matrix) noexcept;
NzMatrix4 operator*(const NzMatrix4& matrix) const;
NzVector2<T> operator*(const NzVector2<T>& vector) const;
NzVector3<T> operator*(const NzVector3<T>& vector) const;
NzVector4<T> operator*(const NzVector4<T>& vector) const;
NzMatrix4 operator*(T scalar) const;
NzMatrix4& operator*=(const NzMatrix4& matrix);
NzMatrix4& operator*=(T scalar);
static NzMatrix4 Concatenate(const NzMatrix4& m1, const NzMatrix4& m2);
static NzMatrix4 ConcatenateAffine(const NzMatrix4& m1, const NzMatrix4& m2);
static NzMatrix4 Identity();
static NzMatrix4 LookAt(const NzVector3<T>& eye, const NzVector3<T>& center, const NzVector3<T>& up);
static NzMatrix4 Ortho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
static NzMatrix4 Perspective(T angle, T ratio, T zNear, T zFar);
static NzMatrix4 Rotate(const NzQuaternion<T>& rotation);
static NzMatrix4 Scale(const NzVector3<T>& scale);
static NzMatrix4 Translate(const NzVector3<T>& translation);
static NzMatrix4 Zero();
struct SharedMatrix
{
T m11, m12, m13, m14,
m21, m22, m23, m24,
m31, m32, m33, m34,
m41, m42, m43, m44;
unsigned short refCount = 1;
NazaraMutex(mutex)
};
private:
void EnsureOwnership();
void ReleaseMatrix();
SharedMatrix* m_sharedMatrix = nullptr;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzMatrix4<T>& matrix);
template<typename T> NzMatrix4<T> operator*(T scale, const NzMatrix4<T>& matrix);
typedef NzMatrix4<double> NzMatrix4d;
typedef NzMatrix4<float> NzMatrix4f;
#include <Nazara/Math/Matrix4.inl>
#endif // NAZARA_MATRIX4_HPP
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_MATRIX4_HPP
#define NAZARA_MATRIX4_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Config.hpp>
#if NAZARA_MATH_THREADSAFE && NAZARA_THREADSAFETY_MATRIX4
#include <Nazara/Core/ThreadSafety.hpp>
#else
#include <Nazara/Core/ThreadSafetyOff.hpp>
#endif
template<typename T> class NzEulerAngles;
template<typename T> class NzQuaternion;
template<typename T> class NzVector2;
template<typename T> class NzVector3;
template<typename T> class NzVector4;
template<typename T> class NzMatrix4
{
public:
NzMatrix4();
NzMatrix4(T r11, T r12, T r13, T r14,
T r21, T r22, T r23, T r24,
T r31, T r32, T r33, T r34,
T r41, T r42, T r43, T r44);
NzMatrix4(const T matrix[16]);
//NzMatrix4(const NzMatrix3<T>& matrix);
template<typename U> explicit NzMatrix4(const NzMatrix4<U>& matrix);
NzMatrix4(const NzMatrix4& matrix);
NzMatrix4(NzMatrix4&& matrix) noexcept;
~NzMatrix4();
NzMatrix4 Concatenate(const NzMatrix4& matrix) const;
NzMatrix4 ConcatenateAffine(const NzMatrix4& matrix) const;
T GetDeterminant() const;
NzMatrix4 GetInverse() const;
NzQuaternion<T> GetRotation() const;
//NzMatrix3 GetRotationMatrix() const;
NzVector3<T> GetScale() const;
NzVector3<T> GetTranslation() const;
NzMatrix4 GetTransposed() const;
bool HasNegativeScale() const;
bool HasScale() const;
bool IsAffine() const;
bool IsDefined() const;
void MakeIdentity();
void MakeLookAt(const NzVector3<T>& eye, const NzVector3<T>& target, const NzVector3<T>& up = NzVector3<T>::Up());
void MakeOrtho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
void MakePerspective(T angle, T ratio, T zNear, T zFar);
void MakeRotation(const NzQuaternion<T>& rotation);
void MakeScale(const NzVector3<T>& scale);
void MakeTranslation(const NzVector3<T>& translation);
void MakeZero();
void Set(T r11, T r12, T r13, T r14,
T r21, T r22, T r23, T r24,
T r31, T r32, T r33, T r34,
T r41, T r42, T r43, T r44);
void Set(const T matrix[16]);
//NzMatrix4(const NzMatrix3<T>& matrix);
void Set(const NzMatrix4& matrix);
void Set(NzMatrix4&& matrix);
template<typename U> void Set(const NzMatrix4<U>& matrix);
void SetRotation(const NzQuaternion<T>& rotation);
void SetScale(const NzVector3<T>& scale);
void SetTranslation(const NzVector3<T>& translation);
NzString ToString() const;
NzVector2<T> Transform(const NzVector2<T>& vector, T z = 0.0, T w = 1.0) const;
NzVector3<T> Transform(const NzVector3<T>& vector, T w = 1.0) const;
NzVector4<T> Transform(const NzVector4<T>& vector) const;
NzMatrix4& Transpose();
operator NzString() const;
operator T*();
operator const T*() const;
T& operator()(unsigned int x, unsigned int y);
const T& operator()(unsigned int x, unsigned int y) const;
NzMatrix4& operator=(const NzMatrix4& matrix);
NzMatrix4& operator=(NzMatrix4&& matrix) noexcept;
NzMatrix4 operator*(const NzMatrix4& matrix) const;
NzVector2<T> operator*(const NzVector2<T>& vector) const;
NzVector3<T> operator*(const NzVector3<T>& vector) const;
NzVector4<T> operator*(const NzVector4<T>& vector) const;
NzMatrix4 operator*(T scalar) const;
NzMatrix4& operator*=(const NzMatrix4& matrix);
NzMatrix4& operator*=(T scalar);
static NzMatrix4 Concatenate(const NzMatrix4& m1, const NzMatrix4& m2);
static NzMatrix4 ConcatenateAffine(const NzMatrix4& m1, const NzMatrix4& m2);
static NzMatrix4 Identity();
static NzMatrix4 LookAt(const NzVector3<T>& eye, const NzVector3<T>& target, const NzVector3<T>& up = NzVector3<T>::Up());
static NzMatrix4 Ortho(T left, T top, T width, T height, T zNear = -1.0, T zFar = 1.0);
static NzMatrix4 Perspective(T angle, T ratio, T zNear, T zFar);
static NzMatrix4 Rotate(const NzQuaternion<T>& rotation);
static NzMatrix4 Scale(const NzVector3<T>& scale);
static NzMatrix4 Translate(const NzVector3<T>& translation);
static NzMatrix4 Zero();
struct SharedMatrix
{
T m11, m12, m13, m14,
m21, m22, m23, m24,
m31, m32, m33, m34,
m41, m42, m43, m44;
unsigned short refCount = 1;
NazaraMutex(mutex)
};
private:
void EnsureOwnership();
void ReleaseMatrix();
SharedMatrix* m_sharedMatrix = nullptr;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzMatrix4<T>& matrix);
template<typename T> NzMatrix4<T> operator*(T scale, const NzMatrix4<T>& matrix);
typedef NzMatrix4<double> NzMatrix4d;
typedef NzMatrix4<float> NzMatrix4f;
#include <Nazara/Math/Matrix4.inl>
#endif // NAZARA_MATRIX4_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -1,90 +1,93 @@
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_QUATERNION_HPP
#define NAZARA_QUATERNION_HPP
#include <Nazara/Core/String.hpp>
template<typename T> class NzEulerAngles;
template<typename T> class NzVector3;
template<typename T> class NzQuaternion
{
public:
NzQuaternion();
NzQuaternion(T W, T X, T Y, T Z);
NzQuaternion(T quat[4]);
NzQuaternion(T angle, const NzVector3<T>& axis);
NzQuaternion(const NzEulerAngles<T>& angles);
//NzQuaternion(const NzMatrix3<T>& mat);
template<typename U> explicit NzQuaternion(const NzQuaternion<U>& quat);
NzQuaternion(const NzQuaternion& quat) = default;
~NzQuaternion() = default;
T DotProduct(const NzQuaternion& vec) const;
NzQuaternion GetConjugate() const;
NzQuaternion GetNormalized() const;
void MakeIdentity();
void MakeZero();
T Magnitude() const;
T Normalize();
void Set(T W, T X, T Y, T Z);
void Set(T quat[4]);
void Set(T angle, const NzVector3<T>& normalizedAxis);
void Set(const NzEulerAngles<T>& angles);
//void Set(const NzMatrix3<T>& mat);
void Set(const NzQuaternion& quat);
template<typename U> void Set(const NzQuaternion<U>& quat);
T SquaredMagnitude() const;
NzEulerAngles<T> ToEulerAngles() const;
//NzMatrix3<T> ToRotationMatrix() const;
NzString ToString() const;
operator NzString() const;
NzQuaternion& operator=(const NzQuaternion& quat);
NzQuaternion operator+(const NzQuaternion& quat) const;
NzQuaternion operator*(const NzQuaternion& quat) const;
NzVector3<T> operator*(const NzVector3<T>& vec) const;
NzQuaternion operator*(T scale) const;
NzQuaternion operator/(const NzQuaternion& quat) const;
NzQuaternion& operator+=(const NzQuaternion& quat);
NzQuaternion& operator*=(const NzQuaternion& quat);
NzQuaternion& operator*=(T scale);
NzQuaternion& operator/=(const NzQuaternion& quat);
bool operator==(const NzQuaternion& quat) const;
bool operator!=(const NzQuaternion& quat) const;
bool operator<(const NzQuaternion& quat) const;
bool operator<=(const NzQuaternion& quat) const;
bool operator>(const NzQuaternion& quat) const;
bool operator>=(const NzQuaternion& quat) const;
static NzQuaternion Identity();
static NzQuaternion Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp);
static NzQuaternion Zero();
T w, x, y, z;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat);
typedef NzQuaternion<double> NzQuaterniond;
typedef NzQuaternion<float> NzQuaternionf;
#include <Nazara/Math/Quaternion.inl>
#endif // NAZARA_QUATERNION_HPP
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_QUATERNION_HPP
#define NAZARA_QUATERNION_HPP
#include <Nazara/Core/String.hpp>
template<typename T> class NzEulerAngles;
template<typename T> class NzVector3;
template<typename T> class NzQuaternion
{
public:
NzQuaternion();
NzQuaternion(T W, T X, T Y, T Z);
NzQuaternion(T quat[4]);
NzQuaternion(T angle, const NzVector3<T>& axis);
NzQuaternion(const NzEulerAngles<T>& angles);
//NzQuaternion(const NzMatrix3<T>& mat);
template<typename U> explicit NzQuaternion(const NzQuaternion<U>& quat);
NzQuaternion(const NzQuaternion& quat) = default;
~NzQuaternion() = default;
T DotProduct(const NzQuaternion& vec) const;
NzQuaternion GetConjugate() const;
NzQuaternion GetInverse() const;
NzQuaternion GetNormal() const;
void Inverse();
void MakeIdentity();
void MakeZero();
T Magnitude() const;
T Normalize();
void Set(T W, T X, T Y, T Z);
void Set(T quat[4]);
void Set(T angle, const NzVector3<T>& normalizedAxis);
void Set(const NzEulerAngles<T>& angles);
//void Set(const NzMatrix3<T>& mat);
void Set(const NzQuaternion& quat);
template<typename U> void Set(const NzQuaternion<U>& quat);
T SquaredMagnitude() const;
NzEulerAngles<T> ToEulerAngles() const;
//NzMatrix3<T> ToRotationMatrix() const;
NzString ToString() const;
operator NzString() const;
NzQuaternion& operator=(const NzQuaternion& quat);
NzQuaternion operator+(const NzQuaternion& quat) const;
NzQuaternion operator*(const NzQuaternion& quat) const;
NzVector3<T> operator*(const NzVector3<T>& vec) const;
NzQuaternion operator*(T scale) const;
NzQuaternion operator/(const NzQuaternion& quat) const;
NzQuaternion& operator+=(const NzQuaternion& quat);
NzQuaternion& operator*=(const NzQuaternion& quat);
NzQuaternion& operator*=(T scale);
NzQuaternion& operator/=(const NzQuaternion& quat);
bool operator==(const NzQuaternion& quat) const;
bool operator!=(const NzQuaternion& quat) const;
bool operator<(const NzQuaternion& quat) const;
bool operator<=(const NzQuaternion& quat) const;
bool operator>(const NzQuaternion& quat) const;
bool operator>=(const NzQuaternion& quat) const;
static NzQuaternion Identity();
static NzQuaternion Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp);
static NzQuaternion Zero();
T w, x, y, z;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat);
typedef NzQuaternion<double> NzQuaterniond;
typedef NzQuaternion<float> NzQuaternionf;
#include <Nazara/Math/Quaternion.inl>
#endif // NAZARA_QUATERNION_HPP

View File

@@ -1,403 +1,428 @@
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Math/Config.hpp>
#include <Nazara/Math/EulerAngles.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzQuaternion<T>::NzQuaternion()
{
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T W, T X, T Y, T Z)
{
Set(W, X, Y, Z);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T quat[4])
{
Set(quat);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T angle, const NzVector3<T>& axis)
{
Set(angle, axis);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzEulerAngles<T>& angles)
{
Set(angles);
}
/*
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzMatrix3<T>& mat)
{
Set(mat);
}
*/
template<typename T>
template<typename U>
NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
{
Set(quat);
}
template<typename T>
T NzQuaternion<T>::DotProduct(const NzQuaternion& quat) const
{
return w*quat.w + x*quat.x + y*quat.y + z*quat.z;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
{
return NzQuaternion(w, -x, -y, -z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetNormalized() const
{
NzQuaternion<T> quat(*this);
quat.Normalize();
return quat;
}
template<typename T>
void NzQuaternion<T>::MakeIdentity()
{
Set(1.0, 0.0, 0.0, 0.0);
}
template<typename T>
void NzQuaternion<T>::MakeZero()
{
Set(0.0, 0.0, 0.0, 0.0);
}
template<typename T>
T NzQuaternion<T>::Magnitude() const
{
return std::sqrt(SquaredMagnitude());
}
template<typename T>
T NzQuaternion<T>::Normalize()
{
T squaredMagnitude = SquaredMagnitude();
if (squaredMagnitude-F(1.0) > std::numeric_limits<T>::epsilon())
{
T magnitude = std::sqrt(squaredMagnitude);
w /= magnitude;
x /= magnitude;
y /= magnitude;
z /= magnitude;
return magnitude;
}
else
return F(1.0); // Le quaternion est déjà normalisé
}
template<typename T>
void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
{
w = W;
x = X;
y = Y;
z = Z;
}
template<typename T>
void NzQuaternion<T>::Set(T quat[4])
{
w = quat[0];
x = quat[1];
y = quat[2];
z = quat[3];
}
template<typename T>
void NzQuaternion<T>::Set(T angle, const NzVector3<T>& normalizedAxis)
{
#if !NAZARA_MATH_ANGLE_RADIAN
angle = NzDegreeToRadian(angle);
#endif
angle /= 2;
auto sinAngle = std::sin(angle);
w = std::cos(angle);
x = normalizedAxis.x * sinAngle;
y = normalizedAxis.y * sinAngle;
z = normalizedAxis.z * sinAngle;
}
template<typename T>
void NzQuaternion<T>::Set(const NzEulerAngles<T>& angles)
{
Set(angles.ToQuaternion());
}
template<typename T>
template<typename U>
void NzQuaternion<T>::Set(const NzQuaternion<U>& quat)
{
w = static_cast<T>(quat.w);
x = static_cast<T>(quat.x);
y = static_cast<T>(quat.y);
z = static_cast<T>(quat.z);
}
template<typename T>
void NzQuaternion<T>::Set(const NzQuaternion& quat)
{
w = quat.w;
x = quat.x;
y = quat.y;
z = quat.z;
}
template<typename T>
T NzQuaternion<T>::SquaredMagnitude() const
{
return w*w + x*x + y*y + z*z;
}
template<typename T>
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
{
T test = x*y + z*w;
if (test > F(0.499))
// singularity at north pole
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0));
if (test < F(-0.499))
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
T xx = x*x;
T yy = y*y;
T zz = z*z;
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*xx - F(2.0)*zz)),
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*yy - F(2.0)*zz)),
NzRadians(std::asin(F(2.0)*test)));
}
template<typename T>
NzString NzQuaternion<T>::ToString() const
{
NzStringStream ss;
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
}
template<typename T>
NzQuaternion<T>::operator NzString() const
{
return ToString();
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator=(const NzQuaternion& quat)
{
Set(quat);
return *this;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
{
return NzQuaternion(w + quat.w,
x + quat.x,
y + quat.y,
z + quat.z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
{
return NzQuaternion(w*quat.w - x*quat.x - y*quat.y - z*quat.z,
w*quat.x + x*quat.w + y*quat.z - z*quat.y,
w*quat.y + y*quat.w + z*quat.x - x*quat.z,
w*quat.z + z*quat.w + x*quat.y - y*quat.x);
}
template<typename T>
NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
{
NzVector3<T> normal(vec);
normal.Normalize();
NzQuaternion qvec(0.0, normal.x, normal.y, normal.z);
NzQuaternion result(operator*(qvec * GetConjugate()));
return NzVector3<T>(result.x, result.y, result.z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(T scale) const
{
return NzQuaternion(w * scale,
x * scale,
y * scale,
z * scale);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
{
return GetConjugate(quat) * (*this);
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
{
return operator=(operator+(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
{
return operator=(operator*(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
{
return operator=(operator*(scale));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
{
return operator=(operator/(quat));
}
template<typename T>
bool NzQuaternion<T>::operator==(const NzQuaternion& quat) const
{
return NzNumberEquals(w, quat.w) &&
NzNumberEquals(x, quat.x) &&
NzNumberEquals(y, quat.y) &&
NzNumberEquals(z, quat.z);
}
template<typename T>
bool NzQuaternion<T>::operator!=(const NzQuaternion& quat) const
{
return !operator==(quat);
}
template<typename T>
bool NzQuaternion<T>::operator<(const NzQuaternion& quat) const
{
return w < quat.w && x < quat.x && y < quat.y && z < quat.z;
}
template<typename T>
bool NzQuaternion<T>::operator<=(const NzQuaternion& quat) const
{
return operator<(quat) || operator==(quat);
}
template<typename T>
bool NzQuaternion<T>::operator>(const NzQuaternion& quat) const
{
return !operator<=(quat);
}
template<typename T>
bool NzQuaternion<T>::operator>=(const NzQuaternion& quat) const
{
return !operator<(quat);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Identity()
{
NzQuaternion quaternion;
quaternion.MakeIdentity();
return quaternion;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
{
if (interp <= F(0.0))
return quatA;
if (interp >= F(1.0))
return quatB;
NzQuaternion q;
T cosOmega = quatA.DotProduct(quatB);
if (cosOmega < F(0.0))
{
// On inverse tout
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
cosOmega = -cosOmega;
}
else
q.Set(quatB);
T k0, k1;
if (cosOmega > F(0.9999))
{
// Interpolation linéaire pour éviter une division par zéro
k0 = F(1.0) - interp;
k1 = interp;
}
else
{
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
T omega = std::atan2(sinOmega, cosOmega);
// Pour éviter deux divisions
sinOmega = F(1.0)/sinOmega;
k0 = std::sin((F(1.0) - interp) * omega) * sinOmega;
k1 = std::sin(interp*omega) * sinOmega;
}
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
return result += q*k1;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Zero()
{
NzQuaternion quaternion;
quaternion.MakeZero();
return quaternion;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat)
{
return out << quat.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Math/Config.hpp>
#include <Nazara/Math/EulerAngles.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzQuaternion<T>::NzQuaternion()
{
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T W, T X, T Y, T Z)
{
Set(W, X, Y, Z);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T quat[4])
{
Set(quat);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T angle, const NzVector3<T>& axis)
{
Set(angle, axis);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzEulerAngles<T>& angles)
{
Set(angles);
}
/*
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzMatrix3<T>& mat)
{
Set(mat);
}
*/
template<typename T>
template<typename U>
NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
{
Set(quat);
}
template<typename T>
T NzQuaternion<T>::DotProduct(const NzQuaternion& quat) const
{
return w*quat.w + x*quat.x + y*quat.y + z*quat.z;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
{
return NzQuaternion(w, -x, -y, -z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetInverse() const
{
NzQuaternion<T> quat(*this);
quat.Inverse();
return quat;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetNormal() const
{
NzQuaternion<T> quat(*this);
quat.Normalize();
return quat;
}
template<typename T>
void NzQuaternion<T>::Inverse()
{
T norm = SquaredMagnitude();
if (norm > F(0.0))
{
T invNorm = F(1.0) / norm;
w *= invNorm;
x *= -invNorm;
y *= -invNorm;
z *= -invNorm;
}
}
template<typename T>
void NzQuaternion<T>::MakeIdentity()
{
Set(F(1.0), F(0.0), F(0.0), F(0.0));
}
template<typename T>
void NzQuaternion<T>::MakeZero()
{
Set(F(0.0), F(0.0), F(0.0), F(0.0));
}
template<typename T>
T NzQuaternion<T>::Magnitude() const
{
return std::sqrt(SquaredMagnitude());
}
template<typename T>
T NzQuaternion<T>::Normalize()
{
T squaredMagnitude = SquaredMagnitude();
// Inutile de vérifier si la magnitude au carrée est négative (Elle ne peut pas l'être)
if (!NzNumberEquals(squaredMagnitude, F(1.0)))
{
T norm = std::sqrt(squaredMagnitude);
T invNorm = F(1.0) / norm;
w *= invNorm;
x *= invNorm;
y *= invNorm;
z *= invNorm;
return norm;
}
else
return F(1.0); // Le quaternion est déjà normalisé
}
template<typename T>
void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
{
w = W;
x = X;
y = Y;
z = Z;
}
template<typename T>
void NzQuaternion<T>::Set(T quat[4])
{
w = quat[0];
x = quat[1];
y = quat[2];
z = quat[3];
}
template<typename T>
void NzQuaternion<T>::Set(T angle, const NzVector3<T>& axis)
{
angle /= F(2.0);
#if !NAZARA_MATH_ANGLE_RADIAN
angle = NzDegreeToRadian(angle);
#endif
NzVector3<T> normalizedAxis = axis.GetNormal();
T sinAngle = std::sin(angle);
w = std::cos(angle);
x = normalizedAxis.x * sinAngle;
y = normalizedAxis.y * sinAngle;
z = normalizedAxis.z * sinAngle;
Normalize();
}
template<typename T>
void NzQuaternion<T>::Set(const NzEulerAngles<T>& angles)
{
Set(angles.ToQuaternion());
}
template<typename T>
template<typename U>
void NzQuaternion<T>::Set(const NzQuaternion<U>& quat)
{
w = static_cast<T>(quat.w);
x = static_cast<T>(quat.x);
y = static_cast<T>(quat.y);
z = static_cast<T>(quat.z);
}
template<typename T>
void NzQuaternion<T>::Set(const NzQuaternion& quat)
{
w = quat.w;
x = quat.x;
y = quat.y;
z = quat.z;
}
template<typename T>
T NzQuaternion<T>::SquaredMagnitude() const
{
return w*w + x*x + y*y + z*z;
}
template<typename T>
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
{
T test = x*y + z*w;
if (test > F(0.499))
// singularity at north pole
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0));
if (test < F(-0.499))
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*x* - F(2.0)*z*z)),
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*y*y - F(2.0)*z*z)),
NzRadians(std::asin(F(2.0)*test)));
}
template<typename T>
NzString NzQuaternion<T>::ToString() const
{
NzStringStream ss;
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
}
template<typename T>
NzQuaternion<T>::operator NzString() const
{
return ToString();
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator=(const NzQuaternion& quat)
{
Set(quat);
return *this;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
{
return NzQuaternion(w + quat.w,
x + quat.x,
y + quat.y,
z + quat.z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
{
return NzQuaternion(w*quat.w - x*quat.x - y*quat.y - z*quat.z,
w*quat.x + x*quat.w + y*quat.z - z*quat.y,
w*quat.y + y*quat.w + z*quat.x - x*quat.z,
w*quat.z + z*quat.w + x*quat.y - y*quat.x);
}
template<typename T>
NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
{
NzVector3f quatVec(x, y, z);
NzVector3f uv = quatVec.CrossProduct(vec);
NzVector3f uuv = quatVec.CrossProduct(uv);
uv *= F(2.0) * w;
uuv *= F(2.0);
return vec + uv + uuv;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(T scale) const
{
return NzQuaternion(w * scale,
x * scale,
y * scale,
z * scale);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
{
return GetConjugate(quat) * (*this);
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
{
return operator=(operator+(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
{
return operator=(operator*(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
{
return operator=(operator*(scale));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
{
return operator=(operator/(quat));
}
template<typename T>
bool NzQuaternion<T>::operator==(const NzQuaternion& quat) const
{
return NzNumberEquals(w, quat.w) &&
NzNumberEquals(x, quat.x) &&
NzNumberEquals(y, quat.y) &&
NzNumberEquals(z, quat.z);
}
template<typename T>
bool NzQuaternion<T>::operator!=(const NzQuaternion& quat) const
{
return !operator==(quat);
}
template<typename T>
bool NzQuaternion<T>::operator<(const NzQuaternion& quat) const
{
return w < quat.w && x < quat.x && y < quat.y && z < quat.z;
}
template<typename T>
bool NzQuaternion<T>::operator<=(const NzQuaternion& quat) const
{
return operator<(quat) || operator==(quat);
}
template<typename T>
bool NzQuaternion<T>::operator>(const NzQuaternion& quat) const
{
return !operator<=(quat);
}
template<typename T>
bool NzQuaternion<T>::operator>=(const NzQuaternion& quat) const
{
return !operator<(quat);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Identity()
{
NzQuaternion quaternion;
quaternion.MakeIdentity();
return quaternion;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
{
if (interp <= F(0.0))
return quatA;
if (interp >= F(1.0))
return quatB;
NzQuaternion q;
T cosOmega = quatA.DotProduct(quatB);
if (cosOmega < F(0.0))
{
// On inverse tout
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
cosOmega = -cosOmega;
}
else
q.Set(quatB);
T k0, k1;
if (cosOmega > F(0.9999))
{
// Interpolation linéaire pour éviter une division par zéro
k0 = F(1.0) - interp;
k1 = interp;
}
else
{
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
T omega = std::atan2(sinOmega, cosOmega);
// Pour éviter deux divisions
sinOmega = F(1.0)/sinOmega;
k0 = std::sin((F(1.0) - interp) * omega) * sinOmega;
k1 = std::sin(interp*omega) * sinOmega;
}
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
return result += q*k1;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Zero()
{
NzQuaternion quaternion;
quaternion.MakeZero();
return quaternion;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat)
{
return out << quat.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>

View File

@@ -1,104 +1,105 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_VECTOR2_HPP
#define NAZARA_VECTOR2_HPP
#include <Nazara/Core/String.hpp>
template<typename T> class NzVector2
{
public:
NzVector2();
NzVector2(T X, T Y);
explicit NzVector2(T scale);
NzVector2(T vec[2]);
template<typename U> explicit NzVector2(const NzVector2<U>& vec);
NzVector2(const NzVector2& vec) = default;
~NzVector2() = default;
T AbsDotProduct(const NzVector2& vec) const;
T Distance(const NzVector2& vec) const;
float Distancef(const NzVector2& vec) const;
T DotProduct(const NzVector2& vec) const;
NzVector2 GetNormal() const;
void MakeCeil(const NzVector2& vec);
void MakeFloor(const NzVector2& vec);
void MakeUnitX();
void MakeUnitY();
void MakeZero();
T Length() const;
float Lengthf() const;
void Normalize();
void Set(T X, T Y);
void Set(T scale);
void Set(T vec[2]);
template<typename U> void Set(const NzVector2<U>& vec);
T SquaredDistance(const NzVector2& vec) const;
T SquaredLength() const;
NzString ToString() const;
operator NzString() const;
operator T*();
operator const T*() const;
T& operator[](unsigned int i);
T operator[](unsigned int i) const;
const NzVector2& operator+() const;
NzVector2 operator-() const;
NzVector2 operator+(const NzVector2& vec) const;
NzVector2 operator-(const NzVector2& vec) const;
NzVector2 operator*(const NzVector2& vec) const;
NzVector2 operator*(T scale) const;
NzVector2 operator/(const NzVector2& vec) const;
NzVector2 operator/(T scale) const;
NzVector2& operator+=(const NzVector2& vec);
NzVector2& operator-=(const NzVector2& vec);
NzVector2& operator*=(const NzVector2& vec);
NzVector2& operator*=(T scale);
NzVector2& operator/=(const NzVector2& vec);
NzVector2& operator/=(T scale);
bool operator==(const NzVector2& vec) const;
bool operator!=(const NzVector2& vec) const;
bool operator<(const NzVector2& vec) const;
bool operator<=(const NzVector2& vec) const;
bool operator>(const NzVector2& vec) const;
bool operator>=(const NzVector2& vec) const;
static NzVector2 UnitX();
static NzVector2 UnitY();
static NzVector2 Zero();
T x, y;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec);
template<typename T> NzVector2<T> operator*(T scale, const NzVector2<T>& vec);
template<typename T> NzVector2<T> operator/(T scale, const NzVector2<T>& vec);
typedef NzVector2<double> NzVector2d;
typedef NzVector2<float> NzVector2f;
typedef NzVector2<int> NzVector2i;
typedef NzVector2<unsigned int> NzVector2ui;
#include <Nazara/Math/Vector2.inl>
#endif // NAZARA_VECTOR2_HPP
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_VECTOR2_HPP
#define NAZARA_VECTOR2_HPP
#include <Nazara/Core/String.hpp>
template<typename T> class NzVector2
{
public:
NzVector2();
NzVector2(T X, T Y);
explicit NzVector2(T scale);
NzVector2(T vec[2]);
template<typename U> explicit NzVector2(const NzVector2<U>& vec);
NzVector2(const NzVector2& vec) = default;
~NzVector2() = default;
T AbsDotProduct(const NzVector2& vec) const;
T Distance(const NzVector2& vec) const;
float Distancef(const NzVector2& vec) const;
T DotProduct(const NzVector2& vec) const;
NzVector2 GetNormal() const;
T Length() const;
float Lengthf() const;
void MakeUnitX();
void MakeUnitY();
void MakeZero();
void Maximize(const NzVector2& vec);
void Minimize(const NzVector2& vec);
void Normalize();
void Set(T X, T Y);
void Set(T scale);
void Set(T vec[2]);
template<typename U> void Set(const NzVector2<U>& vec);
T SquaredDistance(const NzVector2& vec) const;
T SquaredLength() const;
NzString ToString() const;
operator NzString() const;
operator T*();
operator const T*() const;
T& operator[](unsigned int i);
T operator[](unsigned int i) const;
const NzVector2& operator+() const;
NzVector2 operator-() const;
NzVector2 operator+(const NzVector2& vec) const;
NzVector2 operator-(const NzVector2& vec) const;
NzVector2 operator*(const NzVector2& vec) const;
NzVector2 operator*(T scale) const;
NzVector2 operator/(const NzVector2& vec) const;
NzVector2 operator/(T scale) const;
NzVector2& operator+=(const NzVector2& vec);
NzVector2& operator-=(const NzVector2& vec);
NzVector2& operator*=(const NzVector2& vec);
NzVector2& operator*=(T scale);
NzVector2& operator/=(const NzVector2& vec);
NzVector2& operator/=(T scale);
bool operator==(const NzVector2& vec) const;
bool operator!=(const NzVector2& vec) const;
bool operator<(const NzVector2& vec) const;
bool operator<=(const NzVector2& vec) const;
bool operator>(const NzVector2& vec) const;
bool operator>=(const NzVector2& vec) const;
static NzVector2 UnitX();
static NzVector2 UnitY();
static NzVector2 Zero();
T x, y;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec);
template<typename T> NzVector2<T> operator*(T scale, const NzVector2<T>& vec);
template<typename T> NzVector2<T> operator/(T scale, const NzVector2<T>& vec);
typedef NzVector2<double> NzVector2d;
typedef NzVector2<float> NzVector2f;
typedef NzVector2<int> NzVector2i;
typedef NzVector2<unsigned int> NzVector2ui;
#include <Nazara/Math/Vector2.inl>
#endif // NAZARA_VECTOR2_HPP

View File

@@ -1,488 +1,488 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <stdexcept>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzVector2<T>::NzVector2()
{
}
template<typename T>
NzVector2<T>::NzVector2(T X, T Y)
{
Set(X, Y);
}
template<typename T>
NzVector2<T>::NzVector2(T scale)
{
Set(scale);
}
template<typename T>
NzVector2<T>::NzVector2(T vec[2])
{
Set(vec);
}
template<typename T>
template<typename U>
NzVector2<T>::NzVector2(const NzVector2<U>& vec)
{
Set(vec);
}
template<typename T>
T NzVector2<T>::AbsDotProduct(const NzVector2& vec) const
{
return std::fabs(x * vec.x) + std::fabs(y * vec.y);
}
template<>
inline int NzVector2<int>::AbsDotProduct(const NzVector2<int>& vec) const
{
return std::labs(x * vec.x) + std::labs(y * vec.y);
}
template<>
inline unsigned int NzVector2<unsigned int>::AbsDotProduct(const NzVector2<unsigned int>& vec) const
{
return std::labs(x * vec.x) + std::labs(y * vec.y);
}
template<typename T>
T NzVector2<T>::Distance(const NzVector2& vec) const
{
return std::sqrt(SquaredDistance(vec));
}
template<typename T>
float NzVector2<T>::Distancef(const NzVector2& vec) const
{
return std::sqrt(static_cast<float>(SquaredDistance(vec)));
}
template<typename T>
T NzVector2<T>::DotProduct(const NzVector2& vec) const
{
return x*vec.x + y*vec.y;
}
template<typename T>
NzVector2<T> NzVector2<T>::GetNormal() const
{
NzVector2 vec(*this);
vec.Normalize();
return vec;
}
template<typename T>
T NzVector2<T>::Length() const
{
return std::sqrt(SquaredLength());
}
template<typename T>
float NzVector2<T>::Lengthf() const
{
return std::sqrt(static_cast<float>(SquaredLength()));
}
template<typename T>
void NzVector2<T>::MakeCeil(const NzVector2& vec)
{
if (vec.x > x)
x = vec.x;
if (vec.y > y)
y = vec.y;
}
template<typename T>
void NzVector2<T>::MakeFloor(const NzVector2& vec)
{
if (vec.x < x)
x = vec.x;
if (vec.y < y)
y = vec.y;
}
template<typename T>
void NzVector2<T>::MakeUnitX()
{
Set(F(1.0), F(0.0));
}
template<typename T>
void NzVector2<T>::MakeUnitY()
{
Set(F(0.0), F(1.0));
}
template<typename T>
void NzVector2<T>::MakeZero()
{
Set(F(0.0), F(0.0));
}
template<typename T>
void NzVector2<T>::Normalize()
{
T squaredLength = SquaredLength();
if (squaredLength-F(1.0) > std::numeric_limits<T>::epsilon())
{
T length = std::sqrt(squaredLength);
x /= length;
y /= length;
}
}
template<typename T>
void NzVector2<T>::Set(T X, T Y)
{
x = X;
y = Y;
}
template<typename T>
void NzVector2<T>::Set(T scale)
{
x = scale;
y = scale;
}
template<typename T>
void NzVector2<T>::Set(T vec[2])
{
std::memcpy(&x, vec, 2*sizeof(T));
}
template<typename T>
template<typename U>
void NzVector2<T>::Set(const NzVector2<U>& vec)
{
x = F(vec.x);
y = F(vec.y);
}
template<typename T>
T NzVector2<T>::SquaredDistance(const NzVector2& vec) const
{
return operator-(vec).SquaredLength();
}
template<typename T>
T NzVector2<T>::SquaredLength() const
{
return x*x + y*y;
}
template<typename T>
NzString NzVector2<T>::ToString() const
{
NzStringStream ss;
return ss << "Vector2(" << x << ", " << y << ')';
}
template<typename T>
NzVector2<T>::operator NzString() const
{
return ToString();
}
template<typename T>
NzVector2<T>::operator T*()
{
return &x;
}
template<typename T>
NzVector2<T>::operator const T*() const
{
return &x;
}
template<typename T>
T& NzVector2<T>::operator[](unsigned int i)
{
#if NAZARA_MATH_SAFE
if (i >= 2)
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
throw std::domain_error(ss.ToString());
}
#endif
return *(&x+i);
}
template<typename T>
T NzVector2<T>::operator[](unsigned int i) const
{
#if NAZARA_MATH_SAFE
if (i >= 2)
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
throw std::domain_error(ss.ToString());
}
#endif
return *(&x+i);
}
template<typename T>
const NzVector2<T>& NzVector2<T>::operator+() const
{
return *this;
}
template<typename T>
NzVector2<T> NzVector2<T>::operator-() const
{
return NzVector2(-x, -y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator+(const NzVector2& vec) const
{
return NzVector2(x + vec.x, y + vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator-(const NzVector2& vec) const
{
return NzVector2(x - vec.x, y - vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator*(const NzVector2& vec) const
{
return NzVector2(x * vec.x, y * vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator*(T scale) const
{
return NzVector2(x * scale, y * scale);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator/(const NzVector2& vec) const
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
return NzVector2(x / vec.x, y / vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator/(T scale) const
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(scale, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
return NzVector2(x / scale, y / scale);
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator+=(const NzVector2& vec)
{
x += vec.x;
y += vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator-=(const NzVector2& vec)
{
x -= vec.x;
y -= vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator*=(const NzVector2& vec)
{
x *= vec.x;
y *= vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator*=(T scale)
{
x *= scale;
y *= scale;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator/=(const NzVector2& vec)
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
x /= vec.x;
y /= vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator/=(T scale)
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(scale, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
x /= scale;
y /= scale;
return *this;
}
template<typename T>
bool NzVector2<T>::operator==(const NzVector2& vec) const
{
return NzNumberEquals(x, vec.x) &&
NzNumberEquals(y, vec.y);
}
template<typename T>
bool NzVector2<T>::operator!=(const NzVector2& vec) const
{
return !operator==(vec);
}
template<typename T>
bool NzVector2<T>::operator<(const NzVector2& vec) const
{
return x < vec.x && y < vec.y;
}
template<typename T>
bool NzVector2<T>::operator<=(const NzVector2& vec) const
{
return operator<(vec) || operator==(vec);
}
template<typename T>
bool NzVector2<T>::operator>(const NzVector2& vec) const
{
return !operator<=(vec);
}
template<typename T>
bool NzVector2<T>::operator>=(const NzVector2& vec) const
{
return !operator<(vec);
}
template<typename T>
NzVector2<T> NzVector2<T>::UnitX()
{
NzVector2 vector;
vector.MakeUnitX();
return vector;
}
template<typename T>
NzVector2<T> NzVector2<T>::UnitY()
{
NzVector2 vector;
vector.MakeUnitY();
return vector;
}
template<typename T>
NzVector2<T> NzVector2<T>::Zero()
{
NzVector2 vector;
vector.MakeZero();
return vector;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec)
{
return out << vec.ToString();
}
template<typename T>
NzVector2<T> operator*(T scale, const NzVector2<T>& vec)
{
return NzVector2<T>(scale * vec.x, scale * vec.y);
}
template<typename T>
NzVector2<T> operator/(T scale, const NzVector2<T>& vec)
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
return NzVector2<T>(scale/vec.x, scale/vec.y);
}
#undef F
#include <Nazara/Core/DebugOff.hpp>
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <stdexcept>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzVector2<T>::NzVector2()
{
}
template<typename T>
NzVector2<T>::NzVector2(T X, T Y)
{
Set(X, Y);
}
template<typename T>
NzVector2<T>::NzVector2(T scale)
{
Set(scale);
}
template<typename T>
NzVector2<T>::NzVector2(T vec[2])
{
Set(vec);
}
template<typename T>
template<typename U>
NzVector2<T>::NzVector2(const NzVector2<U>& vec)
{
Set(vec);
}
template<typename T>
T NzVector2<T>::AbsDotProduct(const NzVector2& vec) const
{
return std::fabs(x * vec.x) + std::fabs(y * vec.y);
}
template<>
inline int NzVector2<int>::AbsDotProduct(const NzVector2<int>& vec) const
{
return std::labs(x * vec.x) + std::labs(y * vec.y);
}
template<>
inline unsigned int NzVector2<unsigned int>::AbsDotProduct(const NzVector2<unsigned int>& vec) const
{
return std::labs(x * vec.x) + std::labs(y * vec.y);
}
template<typename T>
T NzVector2<T>::Distance(const NzVector2& vec) const
{
return std::sqrt(SquaredDistance(vec));
}
template<typename T>
float NzVector2<T>::Distancef(const NzVector2& vec) const
{
return std::sqrt(static_cast<float>(SquaredDistance(vec)));
}
template<typename T>
T NzVector2<T>::DotProduct(const NzVector2& vec) const
{
return x*vec.x + y*vec.y;
}
template<typename T>
NzVector2<T> NzVector2<T>::GetNormal() const
{
NzVector2 vec(*this);
vec.Normalize();
return vec;
}
template<typename T>
T NzVector2<T>::Length() const
{
return std::sqrt(SquaredLength());
}
template<typename T>
float NzVector2<T>::Lengthf() const
{
return std::sqrt(static_cast<float>(SquaredLength()));
}
template<typename T>
void NzVector2<T>::MakeUnitX()
{
Set(F(1.0), F(0.0));
}
template<typename T>
void NzVector2<T>::MakeUnitY()
{
Set(F(0.0), F(1.0));
}
template<typename T>
void NzVector2<T>::MakeZero()
{
Set(F(0.0), F(0.0));
}
template<typename T>
void NzVector2<T>::Maximize(const NzVector2& vec)
{
if (vec.x > x)
x = vec.x;
if (vec.y > y)
y = vec.y;
}
template<typename T>
void NzVector2<T>::Minimize(const NzVector2& vec)
{
if (vec.x < x)
x = vec.x;
if (vec.y < y)
y = vec.y;
}
template<typename T>
void NzVector2<T>::Normalize()
{
T squaredLength = SquaredLength();
if (squaredLength-F(1.0) > std::numeric_limits<T>::epsilon())
{
T length = std::sqrt(squaredLength);
x /= length;
y /= length;
}
}
template<typename T>
void NzVector2<T>::Set(T X, T Y)
{
x = X;
y = Y;
}
template<typename T>
void NzVector2<T>::Set(T scale)
{
x = scale;
y = scale;
}
template<typename T>
void NzVector2<T>::Set(T vec[2])
{
std::memcpy(&x, vec, 2*sizeof(T));
}
template<typename T>
template<typename U>
void NzVector2<T>::Set(const NzVector2<U>& vec)
{
x = F(vec.x);
y = F(vec.y);
}
template<typename T>
T NzVector2<T>::SquaredDistance(const NzVector2& vec) const
{
return operator-(vec).SquaredLength();
}
template<typename T>
T NzVector2<T>::SquaredLength() const
{
return x*x + y*y;
}
template<typename T>
NzString NzVector2<T>::ToString() const
{
NzStringStream ss;
return ss << "Vector2(" << x << ", " << y << ')';
}
template<typename T>
NzVector2<T>::operator NzString() const
{
return ToString();
}
template<typename T>
NzVector2<T>::operator T*()
{
return &x;
}
template<typename T>
NzVector2<T>::operator const T*() const
{
return &x;
}
template<typename T>
T& NzVector2<T>::operator[](unsigned int i)
{
#if NAZARA_MATH_SAFE
if (i >= 2)
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
throw std::domain_error(ss.ToString());
}
#endif
return *(&x+i);
}
template<typename T>
T NzVector2<T>::operator[](unsigned int i) const
{
#if NAZARA_MATH_SAFE
if (i >= 2)
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Index out of range (" << i << " >= 2)";
throw std::domain_error(ss.ToString());
}
#endif
return *(&x+i);
}
template<typename T>
const NzVector2<T>& NzVector2<T>::operator+() const
{
return *this;
}
template<typename T>
NzVector2<T> NzVector2<T>::operator-() const
{
return NzVector2(-x, -y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator+(const NzVector2& vec) const
{
return NzVector2(x + vec.x, y + vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator-(const NzVector2& vec) const
{
return NzVector2(x - vec.x, y - vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator*(const NzVector2& vec) const
{
return NzVector2(x * vec.x, y * vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator*(T scale) const
{
return NzVector2(x * scale, y * scale);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator/(const NzVector2& vec) const
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
return NzVector2(x / vec.x, y / vec.y);
}
template<typename T>
NzVector2<T> NzVector2<T>::operator/(T scale) const
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(scale, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
return NzVector2(x / scale, y / scale);
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator+=(const NzVector2& vec)
{
x += vec.x;
y += vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator-=(const NzVector2& vec)
{
x -= vec.x;
y -= vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator*=(const NzVector2& vec)
{
x *= vec.x;
y *= vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator*=(T scale)
{
x *= scale;
y *= scale;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator/=(const NzVector2& vec)
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
x /= vec.x;
y /= vec.y;
return *this;
}
template<typename T>
NzVector2<T>& NzVector2<T>::operator/=(T scale)
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(scale, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
x /= scale;
y /= scale;
return *this;
}
template<typename T>
bool NzVector2<T>::operator==(const NzVector2& vec) const
{
return NzNumberEquals(x, vec.x) &&
NzNumberEquals(y, vec.y);
}
template<typename T>
bool NzVector2<T>::operator!=(const NzVector2& vec) const
{
return !operator==(vec);
}
template<typename T>
bool NzVector2<T>::operator<(const NzVector2& vec) const
{
return x < vec.x && y < vec.y;
}
template<typename T>
bool NzVector2<T>::operator<=(const NzVector2& vec) const
{
return operator<(vec) || operator==(vec);
}
template<typename T>
bool NzVector2<T>::operator>(const NzVector2& vec) const
{
return !operator<=(vec);
}
template<typename T>
bool NzVector2<T>::operator>=(const NzVector2& vec) const
{
return !operator<(vec);
}
template<typename T>
NzVector2<T> NzVector2<T>::UnitX()
{
NzVector2 vector;
vector.MakeUnitX();
return vector;
}
template<typename T>
NzVector2<T> NzVector2<T>::UnitY()
{
NzVector2 vector;
vector.MakeUnitY();
return vector;
}
template<typename T>
NzVector2<T> NzVector2<T>::Zero()
{
NzVector2 vector;
vector.MakeZero();
return vector;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzVector2<T>& vec)
{
return out << vec.ToString();
}
template<typename T>
NzVector2<T> operator*(T scale, const NzVector2<T>& vec)
{
return NzVector2<T>(scale * vec.x, scale * vec.y);
}
template<typename T>
NzVector2<T> operator/(T scale, const NzVector2<T>& vec)
{
#if NAZARA_MATH_SAFE
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
{
NzStringStream ss;
ss << __FILE__ << ':' << __LINE__ << ": Division by zero";
throw std::domain_error(ss.ToString());
}
#endif
return NzVector2<T>(scale/vec.x, scale/vec.y);
}
#undef F
#include <Nazara/Core/DebugOff.hpp>

View File

@@ -1,111 +1,121 @@
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_VECTOR3_HPP
#define NAZARA_VECTOR3_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Vector2.hpp>
template<typename T> class NzVector3
{
public:
NzVector3();
NzVector3(T X, T Y, T Z);
explicit NzVector3(T scale);
NzVector3(T vec[3]);
NzVector3(const NzVector2<T>& vec, T Z = 0.0);
template<typename U> explicit NzVector3(const NzVector3<U>& vec);
NzVector3(const NzVector3& vec) = default;
~NzVector3() = default;
T AbsDotProduct(const NzVector3& vec) const;
NzVector3 CrossProduct(const NzVector3& vec) const;
T Distance(const NzVector3& vec) const;
float Distancef(const NzVector3& vec) const;
T DotProduct(const NzVector3& vec) const;
NzVector3 GetNormal() const;
T Length() const;
float Lengthf() const;
void MakeCeil(const NzVector3& vec);
void MakeFloor(const NzVector3& vec);
void MakeUnitX();
void MakeUnitY();
void MakeUnitZ();
void MakeZero();
void Normalize();
void Set(T X, T Y, T Z);
void Set(T scale);
void Set(T vec[3]);
void Set(const NzVector2<T>& vec, T Z = 0.0);
template<typename U> void Set(const NzVector3<U>& vec);
T SquaredDistance(const NzVector3& vec) const;
T SquaredLength() const;
NzString ToString() const;
operator NzString() const;
operator T*();
operator const T*() const;
T& operator[](unsigned int i);
T operator[](unsigned int i) const;
const NzVector3& operator+() const;
NzVector3 operator-() const;
NzVector3 operator+(const NzVector3& vec) const;
NzVector3 operator-(const NzVector3& vec) const;
NzVector3 operator*(const NzVector3& vec) const;
NzVector3 operator*(T scale) const;
NzVector3 operator/(const NzVector3& vec) const;
NzVector3 operator/(T scale) const;
NzVector3& operator+=(const NzVector3& vec);
NzVector3& operator-=(const NzVector3& vec);
NzVector3& operator*=(const NzVector3& vec);
NzVector3& operator*=(T scale);
NzVector3& operator/=(const NzVector3& vec);
NzVector3& operator/=(T scale);
bool operator==(const NzVector3& vec) const;
bool operator!=(const NzVector3& vec) const;
bool operator<(const NzVector3& vec) const;
bool operator<=(const NzVector3& vec) const;
bool operator>(const NzVector3& vec) const;
bool operator>=(const NzVector3& vec) const;
static NzVector3 UnitX();
static NzVector3 UnitY();
static NzVector3 UnitZ();
static NzVector3 Zero();
T x, y, z;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector3<T>& vec);
template<typename T> NzVector3<T> operator*(T scale, const NzVector3<T>& vec);
template<typename T> NzVector3<T> operator/(T scale, const NzVector3<T>& vec);
typedef NzVector3<double> NzVector3d;
typedef NzVector3<float> NzVector3f;
typedef NzVector3<int> NzVector3i;
typedef NzVector3<unsigned int> NzVector3ui;
#include <Nazara/Math/Vector3.inl>
#endif // NAZARA_VECTOR3_HPP
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_VECTOR3_HPP
#define NAZARA_VECTOR3_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Vector2.hpp>
template<typename T> class NzVector3
{
public:
NzVector3();
NzVector3(T X, T Y, T Z);
explicit NzVector3(T scale);
NzVector3(T vec[3]);
NzVector3(const NzVector2<T>& vec, T Z = 0.0);
template<typename U> explicit NzVector3(const NzVector3<U>& vec);
NzVector3(const NzVector3& vec) = default;
~NzVector3() = default;
T AbsDotProduct(const NzVector3& vec) const;
NzVector3 CrossProduct(const NzVector3& vec) const;
T Distance(const NzVector3& vec) const;
float Distancef(const NzVector3& vec) const;
T DotProduct(const NzVector3& vec) const;
NzVector3 GetNormal() const;
T Length() const;
float Lengthf() const;
void MakeForward();
void MakeLeft();
void MakeUnitX();
void MakeUnitY();
void MakeUnitZ();
void MakeUp();
void MakeZero();
void Maximize(const NzVector3& vec);
void Minimize(const NzVector3& vec);
void Normalize();
void Set(T X, T Y, T Z);
void Set(T scale);
void Set(T vec[3]);
void Set(const NzVector2<T>& vec, T Z = 0.0);
template<typename U> void Set(const NzVector3<U>& vec);
T SquaredDistance(const NzVector3& vec) const;
T SquaredLength() const;
NzString ToString() const;
operator NzString() const;
operator T*();
operator const T*() const;
T& operator[](unsigned int i);
T operator[](unsigned int i) const;
const NzVector3& operator+() const;
NzVector3 operator-() const;
NzVector3 operator+(const NzVector3& vec) const;
NzVector3 operator-(const NzVector3& vec) const;
NzVector3 operator*(const NzVector3& vec) const;
NzVector3 operator*(T scale) const;
NzVector3 operator/(const NzVector3& vec) const;
NzVector3 operator/(T scale) const;
NzVector3& operator+=(const NzVector3& vec);
NzVector3& operator-=(const NzVector3& vec);
NzVector3& operator*=(const NzVector3& vec);
NzVector3& operator*=(T scale);
NzVector3& operator/=(const NzVector3& vec);
NzVector3& operator/=(T scale);
bool operator==(const NzVector3& vec) const;
bool operator!=(const NzVector3& vec) const;
bool operator<(const NzVector3& vec) const;
bool operator<=(const NzVector3& vec) const;
bool operator>(const NzVector3& vec) const;
bool operator>=(const NzVector3& vec) const;
static NzVector3 CrossProduct(const NzVector3& vec1, const NzVector3& vec2);
static T DotProduct(const NzVector3& vec1, const NzVector3& vec2);
static NzVector3 Forward();
static NzVector3 Left();
static NzVector3 Normalize(const NzVector3& vec);
static NzVector3 UnitX();
static NzVector3 UnitY();
static NzVector3 UnitZ();
static NzVector3 Up();
static NzVector3 Zero();
T x, y, z;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector3<T>& vec);
template<typename T> NzVector3<T> operator*(T scale, const NzVector3<T>& vec);
template<typename T> NzVector3<T> operator/(T scale, const NzVector3<T>& vec);
typedef NzVector3<double> NzVector3d;
typedef NzVector3<float> NzVector3f;
typedef NzVector3<int> NzVector3i;
typedef NzVector3<unsigned int> NzVector3ui;
#include <Nazara/Math/Vector3.inl>
#endif // NAZARA_VECTOR3_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -1,97 +1,98 @@
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_VECTOR4_HPP
#define NAZARA_VECTOR4_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Vector3.hpp>
template<typename T> class NzVector4
{
public:
NzVector4();
NzVector4(T X, T Y, T Z, T W = 1.0);
explicit NzVector4(T scale);
NzVector4(T vec[4]);
NzVector4(const NzVector3<T>& vec, T W = 1.0);
template<typename U> explicit NzVector4(const NzVector4<U>& vec);
NzVector4(const NzVector4& vec) = default;
~NzVector4() = default;
T AbsDotProduct(const NzVector4& vec) const;
T DotProduct(const NzVector4& vec) const;
void MakeCeil(const NzVector4& vec);
void MakeFloor(const NzVector4& vec);
void MakeUnitX();
void MakeUnitY();
void MakeUnitZ();
void MakeZero();
void Normalize();
void Set(T X, T Y, T Z, T W = 1.0);
void Set(T scale);
void Set(T vec[4]);
void Set(const NzVector3<T>& vec, T W = 1.0);
template<typename U> void Set(const NzVector4<U>& vec);
NzString ToString() const;
operator NzString() const;
operator T*();
operator const T*() const;
T& operator[](unsigned int i);
T operator[](unsigned int i) const;
const NzVector4& operator+() const;
NzVector4 operator-() const;
NzVector4 operator+(const NzVector4& vec) const;
NzVector4 operator-(const NzVector4& vec) const;
NzVector4 operator*(const NzVector4& vec) const;
NzVector4 operator*(T scale) const;
NzVector4 operator/(const NzVector4& vec) const;
NzVector4 operator/(T scale) const;
NzVector4& operator+=(const NzVector4& vec);
NzVector4& operator-=(const NzVector4& vec);
NzVector4& operator*=(const NzVector4& vec);
NzVector4& operator*=(T scale);
NzVector4& operator/=(const NzVector4& vec);
NzVector4& operator/=(T scale);
bool operator==(const NzVector4& vec) const;
bool operator!=(const NzVector4& vec) const;
bool operator<(const NzVector4& vec) const;
bool operator<=(const NzVector4& vec) const;
bool operator>(const NzVector4& vec) const;
bool operator>=(const NzVector4& vec) const;
static NzVector4 UnitX();
static NzVector4 UnitY();
static NzVector4 UnitZ();
static NzVector4 Zero();
T x, y, z, w;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector4<T>& vec);
template<typename T> NzVector4<T> operator*(T scale, const NzVector4<T>& vec);
template<typename T> NzVector4<T> operator/(T scale, const NzVector4<T>& vec);
typedef NzVector4<double> NzVector4d;
typedef NzVector4<float> NzVector4f;
typedef NzVector4<int> NzVector4i;
#include <Nazara/Math/Vector4.inl>
#endif // NAZARA_VECTOR4_HPP
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#pragma once
#ifndef NAZARA_VECTOR4_HPP
#define NAZARA_VECTOR4_HPP
#include <Nazara/Core/String.hpp>
#include <Nazara/Math/Vector3.hpp>
template<typename T> class NzVector4
{
public:
NzVector4();
NzVector4(T X, T Y, T Z, T W = 1.0);
explicit NzVector4(T scale);
NzVector4(T vec[4]);
NzVector4(const NzVector3<T>& vec, T W = 1.0);
template<typename U> explicit NzVector4(const NzVector4<U>& vec);
NzVector4(const NzVector4& vec) = default;
~NzVector4() = default;
T AbsDotProduct(const NzVector4& vec) const;
T DotProduct(const NzVector4& vec) const;
void MakeUnitX();
void MakeUnitY();
void MakeUnitZ();
void MakeZero();
void Maximize(const NzVector4& vec);
void Minimize(const NzVector4& vec);
void Normalize();
void Set(T X, T Y, T Z, T W = 1.0);
void Set(T scale);
void Set(T vec[4]);
void Set(const NzVector3<T>& vec, T W = 1.0);
template<typename U> void Set(const NzVector4<U>& vec);
NzString ToString() const;
operator NzString() const;
operator T*();
operator const T*() const;
T& operator[](unsigned int i);
T operator[](unsigned int i) const;
const NzVector4& operator+() const;
NzVector4 operator-() const;
NzVector4 operator+(const NzVector4& vec) const;
NzVector4 operator-(const NzVector4& vec) const;
NzVector4 operator*(const NzVector4& vec) const;
NzVector4 operator*(T scale) const;
NzVector4 operator/(const NzVector4& vec) const;
NzVector4 operator/(T scale) const;
NzVector4& operator+=(const NzVector4& vec);
NzVector4& operator-=(const NzVector4& vec);
NzVector4& operator*=(const NzVector4& vec);
NzVector4& operator*=(T scale);
NzVector4& operator/=(const NzVector4& vec);
NzVector4& operator/=(T scale);
bool operator==(const NzVector4& vec) const;
bool operator!=(const NzVector4& vec) const;
bool operator<(const NzVector4& vec) const;
bool operator<=(const NzVector4& vec) const;
bool operator>(const NzVector4& vec) const;
bool operator>=(const NzVector4& vec) const;
static NzVector4 UnitX();
static NzVector4 UnitY();
static NzVector4 UnitZ();
static NzVector4 Zero();
T x, y, z, w;
};
template<typename T> std::ostream& operator<<(std::ostream& out, const NzVector4<T>& vec);
template<typename T> NzVector4<T> operator*(T scale, const NzVector4<T>& vec);
template<typename T> NzVector4<T> operator/(T scale, const NzVector4<T>& vec);
typedef NzVector4<double> NzVector4d;
typedef NzVector4<float> NzVector4f;
typedef NzVector4<int> NzVector4i;
#include <Nazara/Math/Vector4.inl>
#endif // NAZARA_VECTOR4_HPP

File diff suppressed because it is too large Load Diff