Added RenderTextures (And many others things)

-Added Forward, left and up vector (Vector3)
-Added Matrix4::ConcatenateAffine shortcut
-Added Quaternion::GetInverse() and Quaternion::Inverse()
-Added Resource listeners
-Added Depth and stencil pixel formats
-All enums now have an ending "max" entry
-Animation/Mesh::Add[Sequence/Skin/SubMesh] now returns a boolean
-Contexts are now resources
-Enhanced AnimatedMesh demo
-Fixed MD2 facing
-Fixed Vector3::CrossProduct
-Made Resource thread-safe
-Made OpenGL translation table global
-Many bugfixes
-MLT will now write malloc failure to the log
-Most of the strcpy were replaced with faster memcpy
-Occlusion queries availability is now always tested
-OpenGL-related includes now requires NAZARA_RENDERER_OPENGL to be
defined to have any effect
-Pixel formats now have a type
-Renamed RenderTarget::IsValid to IsRenderable
-Renamed Quaternion::GetNormalized() to GetNormal()
-Renamed Texture::Bind() to Prepare()
-Renamed VectorX::Make[Ceil|Floor] to Maximize/Minimize
-Removed MATH_MATRIX_COLUMN_MAJOR option (all matrices are column-major)
-Removed RENDERER_ACTIVATE_RENDERWINDOW_ON_CREATION option (Render
windows are active upon their creation)


Former-commit-id: 0d1da1e32c156a958221edf04a5315c75b354450
This commit is contained in:
Jérôme Leclercq
2012-09-20 22:07:30 +02:00
parent a6ed70123b
commit cd5a1b7a5e
65 changed files with 24385 additions and 22703 deletions

View File

@@ -1,317 +1,342 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Animation.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Utility/Config.hpp>
#include <map>
#include <vector>
#include <Nazara/Utility/Debug.hpp>
struct NzAnimationImpl
{
std::map<NzString, unsigned int> sequenceMap;
std::vector<NzSequence> sequences;
nzAnimationType type;
unsigned int frameCount;
};
bool NzAnimationParams::IsValid() const
{
if (startFrame > endFrame)
{
NazaraError("Start frame must be lower than end frame");
return false;
}
return true;
}
NzAnimation::~NzAnimation()
{
Destroy();
}
unsigned int NzAnimation::AddSequence(const NzSequence& sequence)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return 0;
}
#endif
unsigned int index = m_impl->sequences.size();
if (!sequence.name.IsEmpty())
{
#if NAZARA_UTILITY_SAFE
auto it = m_impl->sequenceMap.find(sequence.name);
if (it != m_impl->sequenceMap.end())
{
NazaraError("Sequence name \"" + sequence.name + "\" is already used");
return 0;
}
#endif
m_impl->sequenceMap[sequence.name] = index;
}
m_impl->sequences.push_back(sequence);
return index;
}
bool NzAnimation::Create(nzAnimationType type, unsigned int frameCount)
{
Destroy();
#if NAZARA_UTILITY_SAFE
if (type == nzAnimationType_Static)
{
NazaraError("Invalid type");
return false;
}
if (frameCount == 0)
{
NazaraError("Frame count must be over zero");
return false;
}
#endif
m_impl = new NzAnimationImpl;
m_impl->frameCount = frameCount;
m_impl->type = type;
return true;
}
void NzAnimation::Destroy()
{
if (m_impl)
{
delete m_impl;
m_impl = nullptr;
}
}
unsigned int NzAnimation::GetFrameCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
return m_impl->frameCount;
}
NzSequence* NzAnimation::GetSequence(const NzString& sequenceName)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
auto it = m_impl->sequenceMap.find(sequenceName);
if (it == m_impl->sequenceMap.end())
{
NazaraError("Sequence not found");
return nullptr;
}
return &m_impl->sequences[it->second];
#else
return &m_impl->sequences[m_impl->sequenceMap[sequenceName]];
#endif
}
NzSequence* NzAnimation::GetSequence(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
if (index >= m_impl->sequences.size())
{
NazaraError("Sequence index out of range (" + NzString::Number(index) + " >= " + NzString::Number(m_impl->sequences.size()) + ')');
return nullptr;
}
#endif
return &m_impl->sequences[index];
}
const NzSequence* NzAnimation::GetSequence(const NzString& sequenceName) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
auto it = m_impl->sequenceMap.find(sequenceName);
if (it == m_impl->sequenceMap.end())
{
NazaraError("Sequence not found");
return nullptr;
}
return &m_impl->sequences[it->second];
#else
return &m_impl->sequences[m_impl->sequenceMap[sequenceName]];
#endif
}
const NzSequence* NzAnimation::GetSequence(unsigned int index) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
if (index >= m_impl->sequences.size())
{
NazaraError("Sequence index out of range (" + NzString::Number(index) + " >= " + NzString::Number(m_impl->sequences.size()) + ')');
return nullptr;
}
#endif
return &m_impl->sequences[index];
}
unsigned int NzAnimation::GetSequenceCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return 0;
}
#endif
return m_impl->sequences.size();
}
nzAnimationType NzAnimation::GetType() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nzAnimationType_Static; // Ce qui est une valeur invalide pour NzAnimation
}
#endif
return m_impl->type;
}
bool NzAnimation::HasSequence(const NzString& sequenceName) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
return m_impl->sequenceMap.find(sequenceName) != m_impl->sequenceMap.end();
}
bool NzAnimation::HasSequence(unsigned int index) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
return index >= m_impl->sequences.size();
}
bool NzAnimation::IsValid() const
{
return m_impl != nullptr;
}
bool NzAnimation::LoadFromFile(const NzString& filePath, const NzAnimationParams& params)
{
return NzAnimationLoader::LoadFromFile(this, filePath, params);
}
bool NzAnimation::LoadFromMemory(const void* data, std::size_t size, const NzAnimationParams& params)
{
return NzAnimationLoader::LoadFromMemory(this, data, size, params);
}
bool NzAnimation::LoadFromStream(NzInputStream& stream, const NzAnimationParams& params)
{
return NzAnimationLoader::LoadFromStream(this, stream, params);
}
void NzAnimation::RemoveSequence(const NzString& identifier)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return;
}
auto it = m_impl->sequenceMap.find(identifier);
if (it == m_impl->sequenceMap.end())
{
NazaraError("SubMesh not found");
return;
}
unsigned int index = it->second;
#else
unsigned int index = m_impl->sequenceMap[identifier];
#endif
auto it2 = m_impl->sequences.begin();
std::advance(it2, index);
m_impl->sequences.erase(it2);
}
void NzAnimation::RemoveSequence(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return;
}
if (index >= m_impl->sequences.size())
{
NazaraError("Sequence index out of range (" + NzString::Number(index) + " >= " + NzString::Number(m_impl->sequences.size()) + ')');
return;
}
#endif
auto it = m_impl->sequences.begin();
std::advance(it, index);
m_impl->sequences.erase(it);
}
NzAnimationLoader::LoaderList NzAnimation::s_loaders;
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Animation.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Utility/Config.hpp>
#include <map>
#include <vector>
#include <Nazara/Utility/Debug.hpp>
struct NzAnimationImpl
{
std::map<NzString, unsigned int> sequenceMap;
std::vector<NzSequence> sequences;
nzAnimationType type;
unsigned int frameCount;
};
bool NzAnimationParams::IsValid() const
{
if (startFrame > endFrame)
{
NazaraError("Start frame must be lower than end frame");
return false;
}
return true;
}
NzAnimation::~NzAnimation()
{
Destroy();
}
bool NzAnimation::AddSequence(const NzSequence& sequence)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
unsigned int index = m_impl->sequences.size();
if (!sequence.name.IsEmpty())
{
#if NAZARA_UTILITY_SAFE
auto it = m_impl->sequenceMap.find(sequence.name);
if (it != m_impl->sequenceMap.end())
{
NazaraError("Sequence name \"" + sequence.name + "\" is already used");
return false;
}
#endif
m_impl->sequenceMap[sequence.name] = index;
}
m_impl->sequences.push_back(sequence);
return true;
}
bool NzAnimation::Create(nzAnimationType type, unsigned int frameCount)
{
Destroy();
#if NAZARA_UTILITY_SAFE
if (type == nzAnimationType_Static)
{
NazaraError("Invalid type");
return false;
}
if (frameCount == 0)
{
NazaraError("Frame count must be over zero");
return false;
}
#endif
m_impl = new NzAnimationImpl;
m_impl->frameCount = frameCount;
m_impl->type = type;
NotifyCreated();
return true;
}
void NzAnimation::Destroy()
{
if (m_impl)
{
NotifyDestroy();
delete m_impl;
m_impl = nullptr;
}
}
unsigned int NzAnimation::GetFrameCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
return m_impl->frameCount;
}
NzSequence* NzAnimation::GetSequence(const NzString& sequenceName)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
auto it = m_impl->sequenceMap.find(sequenceName);
if (it == m_impl->sequenceMap.end())
{
NazaraError("Sequence not found");
return nullptr;
}
return &m_impl->sequences[it->second];
#else
return &m_impl->sequences[m_impl->sequenceMap[sequenceName]];
#endif
}
NzSequence* NzAnimation::GetSequence(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
if (index >= m_impl->sequences.size())
{
NazaraError("Sequence index out of range (" + NzString::Number(index) + " >= " + NzString::Number(m_impl->sequences.size()) + ')');
return nullptr;
}
#endif
return &m_impl->sequences[index];
}
const NzSequence* NzAnimation::GetSequence(const NzString& sequenceName) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
auto it = m_impl->sequenceMap.find(sequenceName);
if (it == m_impl->sequenceMap.end())
{
NazaraError("Sequence not found");
return nullptr;
}
return &m_impl->sequences[it->second];
#else
return &m_impl->sequences[m_impl->sequenceMap[sequenceName]];
#endif
}
const NzSequence* NzAnimation::GetSequence(unsigned int index) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
if (index >= m_impl->sequences.size())
{
NazaraError("Sequence index out of range (" + NzString::Number(index) + " >= " + NzString::Number(m_impl->sequences.size()) + ')');
return nullptr;
}
#endif
return &m_impl->sequences[index];
}
unsigned int NzAnimation::GetSequenceCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return 0;
}
#endif
return m_impl->sequences.size();
}
int NzAnimation::GetSequenceIndex(const NzString& sequenceName) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return -1;
}
auto it = m_impl->sequenceMap.find(sequenceName);
if (it == m_impl->sequenceMap.end())
{
NazaraError("Sequence not found");
return -1;
}
return it->second;
#else
return m_impl->sequenceMap[sequenceName];
#endif
}
nzAnimationType NzAnimation::GetType() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nzAnimationType_Static; // Ce qui est une valeur invalide pour NzAnimation
}
#endif
return m_impl->type;
}
bool NzAnimation::HasSequence(const NzString& sequenceName) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
return m_impl->sequenceMap.find(sequenceName) != m_impl->sequenceMap.end();
}
bool NzAnimation::HasSequence(unsigned int index) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return false;
}
#endif
return index >= m_impl->sequences.size();
}
bool NzAnimation::IsValid() const
{
return m_impl != nullptr;
}
bool NzAnimation::LoadFromFile(const NzString& filePath, const NzAnimationParams& params)
{
return NzAnimationLoader::LoadFromFile(this, filePath, params);
}
bool NzAnimation::LoadFromMemory(const void* data, std::size_t size, const NzAnimationParams& params)
{
return NzAnimationLoader::LoadFromMemory(this, data, size, params);
}
bool NzAnimation::LoadFromStream(NzInputStream& stream, const NzAnimationParams& params)
{
return NzAnimationLoader::LoadFromStream(this, stream, params);
}
void NzAnimation::RemoveSequence(const NzString& identifier)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return;
}
auto it = m_impl->sequenceMap.find(identifier);
if (it == m_impl->sequenceMap.end())
{
NazaraError("Sequence not found");
return;
}
int index = it->second;
#else
int index = m_impl->sequenceMap[identifier];
#endif
auto it2 = m_impl->sequences.begin();
std::advance(it2, index);
m_impl->sequences.erase(it2);
}
void NzAnimation::RemoveSequence(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return;
}
if (index >= m_impl->sequences.size())
{
NazaraError("Sequence index out of range (" + NzString::Number(index) + " >= " + NzString::Number(m_impl->sequences.size()) + ')');
return;
}
#endif
auto it = m_impl->sequences.begin();
std::advance(it, index);
m_impl->sequences.erase(it);
}
NzAnimationLoader::LoaderList NzAnimation::s_loaders;

View File

@@ -1,337 +1,339 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Buffer.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Utility/BufferImpl.hpp>
#include <Nazara/Utility/Config.hpp>
#include <Nazara/Utility/SoftwareBuffer.hpp>
#include <cstring>
#include <stdexcept>
#include <Nazara/Utility/Debug.hpp>
namespace
{
NzBufferImpl* SoftwareBufferFunction(NzBuffer* parent, nzBufferType type)
{
return new NzSoftwareBuffer(parent, type);
}
}
NzBuffer::NzBuffer(nzBufferType type) :
m_type(type),
m_typeSize(0),
m_impl(nullptr),
m_length(0)
{
}
NzBuffer::NzBuffer(nzBufferType type, unsigned int length, nzUInt8 typeSize, nzBufferStorage storage, nzBufferUsage usage) :
m_type(type),
m_impl(nullptr)
{
Create(length, typeSize, storage, usage);
#ifdef NAZARA_DEBUG
if (!m_impl)
{
NazaraError("Failed to create buffer");
throw std::runtime_error("Constructor failed");
}
#endif
}
NzBuffer::~NzBuffer()
{
Destroy();
}
bool NzBuffer::CopyContent(NzBuffer& buffer)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer must be valid");
return false;
}
if (!buffer.IsValid())
{
NazaraError("Source buffer must be valid");
return false;
}
if (!buffer.GetTypeSize() != m_typeSize)
{
NazaraError("Source buffer type size does not match buffer type size");
return false;
}
#endif
void* ptr = buffer.Map(nzBufferAccess_ReadOnly);
if (!ptr)
{
NazaraError("Failed to map source buffer");
return false;
}
bool r = Fill(ptr, 0, buffer.GetLength());
if (!buffer.Unmap())
NazaraWarning("Failed to unmap source buffer");
return r;
}
bool NzBuffer::Create(unsigned int length, nzUInt8 typeSize, nzBufferStorage storage, nzBufferUsage usage)
{
Destroy();
// On tente d'abord de faire un buffer hardware, si supporté
if (s_bufferFunctions[storage])
{
NzBufferImpl* impl = s_bufferFunctions[storage](this, m_type);
if (!impl->Create(length*typeSize, usage))
{
NazaraError("Failed to create buffer");
delete impl;
return false;
}
m_impl = impl;
}
else
{
NazaraError("Buffer storage not supported");
return false;
}
m_length = length;
m_typeSize = typeSize;
m_storage = storage;
m_usage = usage;
// Si on arrive ici c'est que tout s'est bien passé.
return true;
}
void NzBuffer::Destroy()
{
if (m_impl)
{
m_impl->Destroy();
delete m_impl;
m_impl = nullptr;
}
}
bool NzBuffer::Fill(const void* data, unsigned int offset, unsigned int length)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return false;
}
if (offset+length > m_length)
{
NazaraError("Exceeding buffer size");
return false;
}
#endif
return m_impl->Fill(data, offset*m_typeSize, ((length == 0) ? m_length-offset : length)*m_typeSize);
}
NzBufferImpl* NzBuffer::GetImpl() const
{
return m_impl;
}
unsigned int NzBuffer::GetLength() const
{
return m_length;
}
void* NzBuffer::GetPointer()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return nullptr;
}
#endif
return m_impl->GetPointer();
}
const void* NzBuffer::GetPointer() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return nullptr;
}
#endif
return m_impl->GetPointer();
}
unsigned int NzBuffer::GetSize() const
{
return m_length*m_typeSize;
}
nzBufferStorage NzBuffer::GetStorage() const
{
return m_storage;
}
nzBufferType NzBuffer::GetType() const
{
return m_type;
}
nzUInt8 NzBuffer::GetTypeSize() const
{
return m_typeSize;
}
nzBufferUsage NzBuffer::GetUsage() const
{
return m_usage;
}
bool NzBuffer::IsHardware() const
{
return m_storage == nzBufferStorage_Hardware;
}
bool NzBuffer::IsValid() const
{
return m_impl != nullptr;
}
void* NzBuffer::Map(nzBufferAccess access, unsigned int offset, unsigned int length)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return nullptr;
}
if (offset+length > m_length)
{
NazaraError("Exceeding buffer size");
return nullptr;
}
#endif
return m_impl->Map(access, offset*m_typeSize, ((length == 0) ? m_length-offset : length)*m_typeSize);
}
bool NzBuffer::SetStorage(nzBufferStorage storage)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return false;
}
#endif
if (m_storage == storage)
return true;
#if NAZARA_UTILITY_SAFE
if (!IsSupported(storage))
{
NazaraError("Storage not supported");
return false;
}
#endif
void* ptr = m_impl->Map(nzBufferAccess_ReadOnly, 0, m_length*m_typeSize);
if (!ptr)
{
NazaraError("Failed to map buffer");
return false;
}
NzBufferImpl* impl = s_bufferFunctions[storage](this, m_type);
if (!impl->Create(m_length*m_typeSize, m_usage))
{
NazaraError("Failed to create buffer");
delete impl;
if (!m_impl->Unmap())
NazaraWarning("Failed to unmap buffer");
return false;
}
if (!impl->Fill(ptr, 0, m_length*m_typeSize))
{
NazaraError("Failed to fill buffer");
impl->Destroy();
delete impl;
if (!m_impl->Unmap())
NazaraWarning("Failed to unmap buffer");
return false;
}
m_impl->Unmap();
m_impl->Destroy();
delete m_impl;
m_impl = impl;
m_storage = storage;
return true;
}
bool NzBuffer::Unmap()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return false;
}
#endif
return m_impl->Unmap();
}
bool NzBuffer::IsSupported(nzBufferStorage storage)
{
return s_bufferFunctions[storage] != nullptr;
}
void NzBuffer::SetBufferFunction(nzBufferStorage storage, BufferFunction func)
{
s_bufferFunctions[storage] = func;
}
bool NzBuffer::Initialize()
{
s_bufferFunctions[nzBufferStorage_Software] = SoftwareBufferFunction;
return true;
}
void NzBuffer::Uninitialize()
{
std::memset(s_bufferFunctions, 0, (nzBufferStorage_Max+1)*sizeof(NzBuffer::BufferFunction));
}
NzBuffer::BufferFunction NzBuffer::s_bufferFunctions[nzBufferStorage_Max+1] = {0};
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Buffer.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Utility/BufferImpl.hpp>
#include <Nazara/Utility/Config.hpp>
#include <Nazara/Utility/SoftwareBuffer.hpp>
#include <cstring>
#include <stdexcept>
#include <Nazara/Utility/Debug.hpp>
namespace
{
NzBufferImpl* SoftwareBufferFunction(NzBuffer* parent, nzBufferType type)
{
return new NzSoftwareBuffer(parent, type);
}
}
NzBuffer::NzBuffer(nzBufferType type) :
m_type(type),
m_typeSize(0),
m_impl(nullptr),
m_length(0)
{
}
NzBuffer::NzBuffer(nzBufferType type, unsigned int length, nzUInt8 typeSize, nzBufferStorage storage, nzBufferUsage usage) :
m_type(type),
m_impl(nullptr)
{
Create(length, typeSize, storage, usage);
#ifdef NAZARA_DEBUG
if (!m_impl)
{
NazaraError("Failed to create buffer");
throw std::runtime_error("Constructor failed");
}
#endif
}
NzBuffer::~NzBuffer()
{
Destroy();
}
bool NzBuffer::CopyContent(NzBuffer& buffer)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer must be valid");
return false;
}
if (!buffer.IsValid())
{
NazaraError("Source buffer must be valid");
return false;
}
if (!buffer.GetTypeSize() != m_typeSize)
{
NazaraError("Source buffer type size does not match buffer type size");
return false;
}
#endif
void* ptr = buffer.Map(nzBufferAccess_ReadOnly);
if (!ptr)
{
NazaraError("Failed to map source buffer");
return false;
}
bool r = Fill(ptr, 0, buffer.GetLength());
if (!buffer.Unmap())
NazaraWarning("Failed to unmap source buffer");
return r;
}
bool NzBuffer::Create(unsigned int length, nzUInt8 typeSize, nzBufferStorage storage, nzBufferUsage usage)
{
Destroy();
// On tente d'abord de faire un buffer hardware, si supporté
if (s_bufferFunctions[storage])
{
NzBufferImpl* impl = s_bufferFunctions[storage](this, m_type);
if (!impl->Create(length*typeSize, usage))
{
NazaraError("Failed to create buffer");
delete impl;
return false;
}
m_impl = impl;
}
else
{
NazaraError("Buffer storage not supported");
return false;
}
m_length = length;
m_typeSize = typeSize;
m_storage = storage;
m_usage = usage;
NotifyCreated();
return true; // Si on arrive ici c'est que tout s'est bien passé.
}
void NzBuffer::Destroy()
{
if (m_impl)
{
NotifyDestroy();
m_impl->Destroy();
delete m_impl;
m_impl = nullptr;
}
}
bool NzBuffer::Fill(const void* data, unsigned int offset, unsigned int length)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return false;
}
if (offset+length > m_length)
{
NazaraError("Exceeding buffer size");
return false;
}
#endif
return m_impl->Fill(data, offset*m_typeSize, ((length == 0) ? m_length-offset : length)*m_typeSize);
}
NzBufferImpl* NzBuffer::GetImpl() const
{
return m_impl;
}
unsigned int NzBuffer::GetLength() const
{
return m_length;
}
void* NzBuffer::GetPointer()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return nullptr;
}
#endif
return m_impl->GetPointer();
}
const void* NzBuffer::GetPointer() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return nullptr;
}
#endif
return m_impl->GetPointer();
}
unsigned int NzBuffer::GetSize() const
{
return m_length*m_typeSize;
}
nzBufferStorage NzBuffer::GetStorage() const
{
return m_storage;
}
nzBufferType NzBuffer::GetType() const
{
return m_type;
}
nzUInt8 NzBuffer::GetTypeSize() const
{
return m_typeSize;
}
nzBufferUsage NzBuffer::GetUsage() const
{
return m_usage;
}
bool NzBuffer::IsHardware() const
{
return m_storage == nzBufferStorage_Hardware;
}
bool NzBuffer::IsValid() const
{
return m_impl != nullptr;
}
void* NzBuffer::Map(nzBufferAccess access, unsigned int offset, unsigned int length)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return nullptr;
}
if (offset+length > m_length)
{
NazaraError("Exceeding buffer size");
return nullptr;
}
#endif
return m_impl->Map(access, offset*m_typeSize, ((length == 0) ? m_length-offset : length)*m_typeSize);
}
bool NzBuffer::SetStorage(nzBufferStorage storage)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return false;
}
#endif
if (m_storage == storage)
return true;
#if NAZARA_UTILITY_SAFE
if (!IsSupported(storage))
{
NazaraError("Storage not supported");
return false;
}
#endif
void* ptr = m_impl->Map(nzBufferAccess_ReadOnly, 0, m_length*m_typeSize);
if (!ptr)
{
NazaraError("Failed to map buffer");
return false;
}
NzBufferImpl* impl = s_bufferFunctions[storage](this, m_type);
if (!impl->Create(m_length*m_typeSize, m_usage))
{
NazaraError("Failed to create buffer");
delete impl;
if (!m_impl->Unmap())
NazaraWarning("Failed to unmap buffer");
return false;
}
if (!impl->Fill(ptr, 0, m_length*m_typeSize))
{
NazaraError("Failed to fill buffer");
impl->Destroy();
delete impl;
if (!m_impl->Unmap())
NazaraWarning("Failed to unmap buffer");
return false;
}
m_impl->Unmap();
m_impl->Destroy();
delete m_impl;
m_impl = impl;
m_storage = storage;
return true;
}
bool NzBuffer::Unmap()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Buffer not valid");
return false;
}
#endif
return m_impl->Unmap();
}
bool NzBuffer::IsSupported(nzBufferStorage storage)
{
return s_bufferFunctions[storage] != nullptr;
}
void NzBuffer::SetBufferFunction(nzBufferStorage storage, BufferFunction func)
{
s_bufferFunctions[storage] = func;
}
bool NzBuffer::Initialize()
{
s_bufferFunctions[nzBufferStorage_Software] = SoftwareBufferFunction;
return true;
}
void NzBuffer::Uninitialize()
{
std::memset(s_bufferFunctions, 0, (nzBufferStorage_Max+1)*sizeof(NzBuffer::BufferFunction));
}
NzBuffer::BufferFunction NzBuffer::s_bufferFunctions[nzBufferStorage_Max+1] = {0};

File diff suppressed because it is too large Load Diff

View File

@@ -1,221 +1,200 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Loaders/MD2.hpp>
#include <Nazara/Core/Endianness.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/File.hpp>
#include <Nazara/Core/InputStream.hpp>
#include <Nazara/Core/MemoryStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/Loaders/MD2/Constants.hpp>
#include <Nazara/Utility/Loaders/MD2/Mesh.hpp>
#include <cstddef>
#include <cstring>
#include <Nazara/Utility/Debug.hpp>
namespace
{
bool NzLoader_MD2_Check(NzInputStream& stream, const NzMeshParams& parameters)
{
NazaraUnused(parameters);
nzUInt32 magic[2];
if (stream.Read(&magic[0], 2*sizeof(nzUInt32)) != 2*sizeof(nzUInt32))
return false;
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&magic[0], sizeof(nzUInt32));
NzByteSwap(&magic[1], sizeof(nzUInt32));
#endif
return magic[0] == md2Ident && magic[1] == 8;
}
bool NzLoader_MD2_Load(NzMesh* mesh, NzInputStream& stream, const NzMeshParams& parameters)
{
md2_header header;
if (stream.Read(&header, sizeof(md2_header)) != sizeof(md2_header))
{
NazaraError("Failed to read header");
return false;
}
// Les fichiers MD2 sont en little endian
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&header.ident, sizeof(nzUInt32));
#endif
if (header.ident != md2Ident)
{
NazaraError("Invalid MD2 file");
return false;
}
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&header.version, sizeof(nzUInt32));
#endif
if (header.version != 8)
{
NazaraError("Bad version number (" + NzString::Number(header.version) + ')');
return false;
}
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&header.skinwidth, sizeof(nzUInt32));
NzByteSwap(&header.skinheight, sizeof(nzUInt32));
NzByteSwap(&header.framesize, sizeof(nzUInt32));
NzByteSwap(&header.num_skins, sizeof(nzUInt32));
NzByteSwap(&header.num_vertices, sizeof(nzUInt32));
NzByteSwap(&header.num_st, sizeof(nzUInt32));
NzByteSwap(&header.num_tris, sizeof(nzUInt32));
NzByteSwap(&header.num_glcmds, sizeof(nzUInt32));
NzByteSwap(&header.num_frames, sizeof(nzUInt32));
NzByteSwap(&header.offset_skins, sizeof(nzUInt32));
NzByteSwap(&header.offset_st, sizeof(nzUInt32));
NzByteSwap(&header.offset_tris, sizeof(nzUInt32));
NzByteSwap(&header.offset_frames, sizeof(nzUInt32));
NzByteSwap(&header.offset_glcmds, sizeof(nzUInt32));
NzByteSwap(&header.offset_end, sizeof(nzUInt32));
#endif
if (stream.GetSize() < header.offset_end)
{
NazaraError("Incomplete MD2 file");
return false;
}
/// Création du mesh
// Animé ou statique, c'est la question
bool animated;
unsigned int startFrame = NzClamp(parameters.animation.startFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
unsigned int endFrame = NzClamp(parameters.animation.endFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
if (parameters.loadAnimations && startFrame != endFrame)
animated = true;
else
animated = false;
if (!mesh->Create((animated) ? nzAnimationType_Keyframe : nzAnimationType_Static)) // Ne devrait pas échouer
{
NazaraInternalError("Failed to create mesh");
return false;
}
/// Chargement des skins
if (header.num_skins > 0)
{
stream.SetCursorPos(header.offset_skins);
{
char skin[68];
for (unsigned int i = 0; i < header.num_skins; ++i)
{
stream.Read(skin, 68*sizeof(char));
mesh->AddSkin(skin);
}
}
}
/// Chargement des animmations
if (animated)
{
NzAnimation* animation = new NzAnimation;
if (animation->Create(nzAnimationType_Keyframe, endFrame-startFrame+1))
{
// Décodage des séquences
NzString frameName;
NzSequence sequence;
sequence.framePerSecond = 10; // Par défaut pour les animations MD2
char name[16], last[16];
stream.SetCursorPos(header.offset_frames + startFrame*header.framesize + offsetof(md2_frame, name));
stream.Read(last, 16*sizeof(char));
int pos = std::strlen(last)-1;
for (unsigned int j = 0; j < 2; ++j)
{
if (!std::isdigit(last[pos]))
break;
pos--;
}
last[pos+1] = '\0';
unsigned int numFrames = 0;
for (unsigned int i = startFrame; i <= endFrame; ++i)
{
stream.SetCursorPos(header.offset_frames + i*header.framesize + offsetof(md2_frame, name));
stream.Read(name, 16*sizeof(char));
pos = std::strlen(name)-1;
for (unsigned int j = 0; j < 2; ++j)
{
if (!std::isdigit(name[pos]))
break;
pos--;
}
name[pos+1] = '\0';
if (std::strcmp(name, last) != 0) // Si les deux frames n'ont pas le même nom
{
// Alors on enregistre la séquence
sequence.firstFrame = i-numFrames;
sequence.lastFrame = i-1;
sequence.name = last;
animation->AddSequence(sequence);
std::strcpy(last, name);
numFrames = 0;
}
numFrames++;
}
// On ajoute la dernière frame (Qui n'a pas été traitée par la boucle)
sequence.firstFrame = endFrame-numFrames;
sequence.lastFrame = endFrame;
sequence.name = last;
animation->AddSequence(sequence);
mesh->SetAnimation(animation);
animation->SetPersistent(false);
}
else
NazaraInternalError("Failed to create animaton");
}
/// Chargement des submesh
// Actuellement le loader ne charge qu'un submesh
// TODO: Utiliser les commandes OpenGL pour accélérer le rendu
NzMD2Mesh* subMesh = new NzMD2Mesh(mesh);
if (!subMesh->Create(header, stream, parameters))
{
NazaraError("Failed to create MD2 mesh");
return false;
}
mesh->AddSubMesh(subMesh);
return true;
}
}
void NzLoaders_MD2_Register()
{
NzMD2Mesh::Initialize();
NzMeshLoader::RegisterLoader("md2", NzLoader_MD2_Check, NzLoader_MD2_Load);
}
void NzLoaders_MD2_Unregister()
{
NzMeshLoader::UnregisterLoader("md2", NzLoader_MD2_Check, NzLoader_MD2_Load);
NzMD2Mesh::Uninitialize();
}
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Loaders/MD2.hpp>
#include <Nazara/Core/Endianness.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/File.hpp>
#include <Nazara/Core/InputStream.hpp>
#include <Nazara/Core/MemoryStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/Loaders/MD2/Constants.hpp>
#include <Nazara/Utility/Loaders/MD2/Mesh.hpp>
#include <cstddef>
#include <cstring>
#include <Nazara/Utility/Debug.hpp>
namespace
{
bool NzLoader_MD2_Check(NzInputStream& stream, const NzMeshParams& parameters)
{
NazaraUnused(parameters);
nzUInt32 magic[2];
if (stream.Read(&magic[0], 2*sizeof(nzUInt32)) != 2*sizeof(nzUInt32))
return false;
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&magic[0], sizeof(nzUInt32));
NzByteSwap(&magic[1], sizeof(nzUInt32));
#endif
return magic[0] == md2Ident && magic[1] == 8;
}
bool NzLoader_MD2_Load(NzMesh* mesh, NzInputStream& stream, const NzMeshParams& parameters)
{
md2_header header;
if (stream.Read(&header, sizeof(md2_header)) != sizeof(md2_header))
{
NazaraError("Failed to read header");
return false;
}
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&header.skinwidth, sizeof(nzUInt32));
NzByteSwap(&header.skinheight, sizeof(nzUInt32));
NzByteSwap(&header.framesize, sizeof(nzUInt32));
NzByteSwap(&header.num_skins, sizeof(nzUInt32));
NzByteSwap(&header.num_vertices, sizeof(nzUInt32));
NzByteSwap(&header.num_st, sizeof(nzUInt32));
NzByteSwap(&header.num_tris, sizeof(nzUInt32));
NzByteSwap(&header.num_glcmds, sizeof(nzUInt32));
NzByteSwap(&header.num_frames, sizeof(nzUInt32));
NzByteSwap(&header.offset_skins, sizeof(nzUInt32));
NzByteSwap(&header.offset_st, sizeof(nzUInt32));
NzByteSwap(&header.offset_tris, sizeof(nzUInt32));
NzByteSwap(&header.offset_frames, sizeof(nzUInt32));
NzByteSwap(&header.offset_glcmds, sizeof(nzUInt32));
NzByteSwap(&header.offset_end, sizeof(nzUInt32));
#endif
if (stream.GetSize() < header.offset_end)
{
NazaraError("Incomplete MD2 file");
return false;
}
/// Création du mesh
// Animé ou statique, c'est la question
bool animated;
unsigned int startFrame = NzClamp(parameters.animation.startFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
unsigned int endFrame = NzClamp(parameters.animation.endFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
if (parameters.loadAnimations && startFrame != endFrame)
animated = true;
else
animated = false;
if (!mesh->Create((animated) ? nzAnimationType_Keyframe : nzAnimationType_Static)) // Ne devrait jamais échouer
{
NazaraInternalError("Failed to create mesh");
return false;
}
/// Chargement des skins
if (header.num_skins > 0)
{
stream.SetCursorPos(header.offset_skins);
{
char skin[68];
for (unsigned int i = 0; i < header.num_skins; ++i)
{
stream.Read(skin, 68*sizeof(char));
mesh->AddSkin(skin);
}
}
}
/// Chargement des animmations
if (animated)
{
NzAnimation* animation = new NzAnimation;
if (animation->Create(nzAnimationType_Keyframe, endFrame-startFrame+1))
{
// Décodage des séquences
NzString frameName;
NzSequence sequence;
sequence.framePerSecond = 10; // Par défaut pour les animations MD2
char name[16], last[16];
stream.SetCursorPos(header.offset_frames + startFrame*header.framesize + offsetof(md2_frame, name));
stream.Read(last, 16*sizeof(char));
int pos = std::strlen(last)-1;
for (unsigned int j = 0; j < 2; ++j)
{
if (!std::isdigit(last[pos]))
break;
pos--;
}
last[pos+1] = '\0';
unsigned int numFrames = 0;
for (unsigned int i = startFrame; i <= endFrame; ++i)
{
stream.SetCursorPos(header.offset_frames + i*header.framesize + offsetof(md2_frame, name));
stream.Read(name, 16*sizeof(char));
pos = std::strlen(name)-1;
for (unsigned int j = 0; j < 2; ++j)
{
if (!std::isdigit(name[pos]))
break;
pos--;
}
name[pos+1] = '\0';
if (std::strcmp(name, last) != 0) // Si les deux frames n'ont pas le même nom
{
// Alors on enregistre la séquence
sequence.firstFrame = i-numFrames;
sequence.lastFrame = i-1;
sequence.name = last;
animation->AddSequence(sequence);
std::strcpy(last, name);
numFrames = 0;
}
numFrames++;
}
// On ajoute la dernière frame (Qui n'a pas été traitée par la boucle)
sequence.firstFrame = endFrame-numFrames;
sequence.lastFrame = endFrame;
sequence.name = last;
animation->AddSequence(sequence);
mesh->SetAnimation(animation);
animation->SetPersistent(false);
}
else
NazaraInternalError("Failed to create animaton");
}
/// Chargement des submesh
// Actuellement le loader ne charge qu'un submesh
// TODO: Utiliser les commandes OpenGL pour accélérer le rendu
NzMD2Mesh* subMesh = new NzMD2Mesh(mesh);
if (!subMesh->Create(header, stream, parameters))
{
NazaraError("Failed to create MD2 mesh");
return false;
}
mesh->AddSubMesh(subMesh);
return true;
}
}
void NzLoaders_MD2_Register()
{
NzMD2Mesh::Initialize();
NzMeshLoader::RegisterLoader("md2", NzLoader_MD2_Check, NzLoader_MD2_Load);
}
void NzLoaders_MD2_Unregister()
{
NzMeshLoader::UnregisterLoader("md2", NzLoader_MD2_Check, NzLoader_MD2_Load);
NzMD2Mesh::Uninitialize();
}

View File

@@ -1,287 +1,292 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Loaders/MD2/Mesh.hpp>
#include <Nazara/Core/InputStream.hpp>
#include <Nazara/Math/Matrix4.hpp>
#include <Nazara/Utility/IndexBuffer.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/VertexBuffer.hpp>
#include <Nazara/Utility/Debug.hpp>
NzMD2Mesh::NzMD2Mesh(const NzMesh* parent) :
NzKeyframeMesh(parent),
m_frames(nullptr),
m_indexBuffer(nullptr),
m_vertexBuffer(nullptr)
{
}
NzMD2Mesh::~NzMD2Mesh()
{
Destroy();
}
bool NzMD2Mesh::Create(const md2_header& header, NzInputStream& stream, const NzMeshParams& parameters)
{
Destroy();
unsigned int startFrame = NzClamp(parameters.animation.startFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
unsigned int endFrame = NzClamp(parameters.animation.endFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
m_frameCount = endFrame - startFrame + 1;
m_vertexCount = header.num_tris*3;
/// Chargement des vertices
std::vector<md2_texCoord> texCoords(header.num_st);
std::vector<md2_triangle> triangles(header.num_tris);
// Lecture des coordonnées de texture
stream.SetCursorPos(header.offset_st);
stream.Read(&texCoords[0], header.num_st*sizeof(md2_texCoord));
#if defined(NAZARA_BIG_ENDIAN)
for (unsigned int i = 0; i < header.num_st; ++i)
{
NzByteSwap(&texCoords[i].u, sizeof(nzInt16));
NzByteSwap(&texCoords[i].v, sizeof(nzInt16));
}
#endif
stream.SetCursorPos(header.offset_tris);
stream.Read(&triangles[0], header.num_tris*sizeof(md2_triangle));
#if defined(NAZARA_BIG_ENDIAN)
for (unsigned int i = 0; i < header.num_tris; ++i)
{
NzByteSwap(&triangles[i].vertices[0], sizeof(nzUInt16));
NzByteSwap(&texCoords[i].texCoords[0], sizeof(nzUInt16));
NzByteSwap(&triangles[i].vertices[1], sizeof(nzUInt16));
NzByteSwap(&texCoords[i].texCoords[1], sizeof(nzUInt16));
NzByteSwap(&triangles[i].vertices[2], sizeof(nzUInt16));
NzByteSwap(&texCoords[i].texCoords[2], sizeof(nzUInt16));
}
#endif
stream.SetCursorPos(header.offset_frames + header.framesize*startFrame);
md2_frame frame;
frame.vertices.resize(header.num_vertices);
// Pour que le modèle soit correctement aligné, on génère une matrice de rotation que nous appliquerons à chacune des vertices
NzMatrix4f rotationMatrix = NzMatrix4f::Rotate(NzEulerAnglesf(90.f, -90.f, 0.f));
unsigned int stride = s_declaration.GetStride(nzElementStream_VertexData);
m_frames = new Frame[m_frameCount];
for (unsigned int i = 0; i < m_frameCount; ++i)
{
stream.Read(&frame.scale, sizeof(NzVector3f));
stream.Read(&frame.translate, sizeof(NzVector3f));
stream.Read(&frame.name, 16*sizeof(char));
stream.Read(&frame.vertices[0], header.num_vertices*sizeof(md2_vertex));
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&frame.scale.x, sizeof(float));
NzByteSwap(&frame.scale.y, sizeof(float));
NzByteSwap(&frame.scale.z, sizeof(float));
NzByteSwap(&frame.translate.x, sizeof(float));
NzByteSwap(&frame.translate.y, sizeof(float));
NzByteSwap(&frame.translate.z, sizeof(float));
#endif
m_frames[i].normal = new nzUInt8[m_vertexCount]; // Nous stockons l'indice de la normale plutôt que la normale (gain d'espace)
m_frames[i].vertices = new NzVector3f[m_vertexCount];
NzVector3f max, min;
for (unsigned int t = 0; t < header.num_tris; ++t)
{
for (unsigned int v = 0; v < 3; ++v)
{
const md2_vertex& vert = frame.vertices[triangles[t].vertices[v]];
NzVector3f vertex = rotationMatrix * NzVector3f(vert.x * frame.scale.x + frame.translate.x, vert.y * frame.scale.y + frame.translate.y, vert.z * frame.scale.z + frame.translate.z);
max.MakeCeil(vertex);
min.MakeFloor(vertex);
m_frames[i].normal[t*3+v] = vert.n;
m_frames[i].vertices[t*3+v] = vertex;
}
}
m_frames[i].aabb.SetExtends(min, max);
}
m_indexBuffer = nullptr; // Pas d'indexbuffer pour l'instant
m_vertexBuffer = new NzVertexBuffer(m_vertexCount, (3+3+2)*sizeof(float), parameters.storage, nzBufferUsage_Dynamic);
nzUInt8* ptr = reinterpret_cast<nzUInt8*>(m_vertexBuffer->Map(nzBufferAccess_WriteOnly));
if (!ptr)
{
NazaraError("Failed to map vertex buffer");
Destroy();
return false;
}
// On avance jusqu'aux premières coordonnées de texture
ptr += s_declaration.GetElement(nzElementStream_VertexData, nzElementUsage_TexCoord)->offset;
for (unsigned int t = 0; t < header.num_tris; ++t)
{
for (unsigned int v = 0; v < 3; ++v)
{
const md2_texCoord& texC = texCoords[triangles[t].texCoords[v]];
NzVector2f* coords = reinterpret_cast<NzVector2f*>(ptr);
coords->x = texC.u / static_cast<float>(header.skinwidth);
coords->y = 1.f - texC.v / static_cast<float>(header.skinheight);
ptr += stride;
}
}
if (!m_vertexBuffer->Unmap())
{
NazaraError("Failed to unmap buffer");
Destroy();
return false;
}
m_vertexBuffer->AddResourceReference();
m_vertexBuffer->SetPersistent(false);
AnimateImpl(0, 0, 0.f);
return true;
}
void NzMD2Mesh::Destroy()
{
if (m_frames)
{
for (unsigned int i = 0; i < m_frameCount; ++i)
{
delete[] m_frames[i].normal;
delete[] m_frames[i].vertices;
}
delete[] m_frames;
m_frames = nullptr;
}
if (m_indexBuffer)
{
m_indexBuffer->RemoveResourceReference();
m_indexBuffer = nullptr;
}
if (m_vertexBuffer)
{
m_vertexBuffer->RemoveResourceReference();
m_vertexBuffer = nullptr;
}
}
const NzAxisAlignedBox& NzMD2Mesh::GetAABB() const
{
return m_aabb;
}
nzAnimationType NzMD2Mesh::GetAnimationType() const
{
if (m_frameCount > 1)
return nzAnimationType_Keyframe;
else
return nzAnimationType_Static;
}
unsigned int NzMD2Mesh::GetFrameCount() const
{
return m_frameCount;
}
const NzIndexBuffer* NzMD2Mesh::GetIndexBuffer() const
{
return nullptr;
//return m_indexBuffer;
}
nzPrimitiveType NzMD2Mesh::GetPrimitiveType() const
{
return nzPrimitiveType_TriangleList;
}
const NzVertexBuffer* NzMD2Mesh::GetVertexBuffer() const
{
return m_vertexBuffer;
}
const NzVertexDeclaration* NzMD2Mesh::GetVertexDeclaration() const
{
return &s_declaration;
}
void NzMD2Mesh::Initialize()
{
NzVertexElement elements[3];
elements[0].offset = 0;
elements[0].type = nzElementType_Float3;
elements[0].usage = nzElementUsage_Position;
elements[1].offset = 3*sizeof(float);
elements[1].type = nzElementType_Float3;
elements[1].usage = nzElementUsage_Normal;
elements[2].offset = 3*sizeof(float) + 3*sizeof(float);
elements[2].type = nzElementType_Float2;
elements[2].usage = nzElementUsage_TexCoord;
s_declaration.Create(elements, 3);
}
void NzMD2Mesh::Uninitialize()
{
s_declaration.Destroy();
}
void NzMD2Mesh::AnimateImpl(unsigned int frameA, unsigned int frameB, float interpolation)
{
nzUInt8* ptr = reinterpret_cast<nzUInt8*>(m_vertexBuffer->Map(nzBufferAccess_WriteOnly));
if (!ptr)
{
NazaraError("Failed to map vertex buffer");
return;
}
unsigned int stride = s_declaration.GetStride(nzElementStream_VertexData);
unsigned int positionOffset = s_declaration.GetElement(nzElementStream_VertexData, nzElementUsage_Position)->offset;
unsigned int normalOffset = s_declaration.GetElement(nzElementStream_VertexData, nzElementUsage_Normal)->offset;
Frame* fA = &m_frames[frameA];
Frame* fB = &m_frames[frameB];
for (unsigned int i = 0; i < m_vertexCount; ++i)
{
NzVector3f* position = reinterpret_cast<NzVector3f*>(ptr + positionOffset);
NzVector3f* normal = reinterpret_cast<NzVector3f*>(ptr + normalOffset);
*position = fA->vertices[i] + interpolation * (fB->vertices[i] - fA->vertices[i]);
*normal = md2Normals[fA->normal[i]] + interpolation * (md2Normals[fB->normal[i]] - md2Normals[fA->normal[i]]);
ptr += stride;
}
if (!m_vertexBuffer->Unmap())
NazaraWarning("Failed to unmap vertex buffer, expect mesh corruption");
// Interpolation de l'AABB
NzVector3f max1 = fA->aabb.GetMaximum();
NzVector3f min1 = fA->aabb.GetMinimum();
m_aabb.SetExtends(min1 + interpolation * (fB->aabb.GetMinimum() - min1), max1 + interpolation * (fB->aabb.GetMaximum() - max1));
}
NzVertexDeclaration NzMD2Mesh::s_declaration;
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Loaders/MD2/Mesh.hpp>
#include <Nazara/Core/InputStream.hpp>
#include <Nazara/Math/Matrix4.hpp>
#include <Nazara/Utility/IndexBuffer.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/VertexBuffer.hpp>
#include <Nazara/Utility/Debug.hpp>
NzMD2Mesh::NzMD2Mesh(const NzMesh* parent) :
NzKeyframeMesh(parent),
m_frames(nullptr),
m_indexBuffer(nullptr),
m_vertexBuffer(nullptr)
{
}
NzMD2Mesh::~NzMD2Mesh()
{
Destroy();
}
bool NzMD2Mesh::Create(const md2_header& header, NzInputStream& stream, const NzMeshParams& parameters)
{
Destroy();
unsigned int startFrame = NzClamp(parameters.animation.startFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
unsigned int endFrame = NzClamp(parameters.animation.endFrame, 0U, static_cast<unsigned int>(header.num_frames-1));
m_frameCount = endFrame - startFrame + 1;
m_vertexCount = header.num_tris * 3;
/// Chargement des vertices
std::vector<md2_texCoord> texCoords(header.num_st);
std::vector<md2_triangle> triangles(header.num_tris);
// Lecture des coordonnées de texture
stream.SetCursorPos(header.offset_st);
stream.Read(&texCoords[0], header.num_st*sizeof(md2_texCoord));
#if defined(NAZARA_BIG_ENDIAN)
for (unsigned int i = 0; i < header.num_st; ++i)
{
NzByteSwap(&texCoords[i].u, sizeof(nzInt16));
NzByteSwap(&texCoords[i].v, sizeof(nzInt16));
}
#endif
stream.SetCursorPos(header.offset_tris);
stream.Read(&triangles[0], header.num_tris*sizeof(md2_triangle));
#if defined(NAZARA_BIG_ENDIAN)
for (unsigned int i = 0; i < header.num_tris; ++i)
{
NzByteSwap(&triangles[i].vertices[0], sizeof(nzUInt16));
NzByteSwap(&texCoords[i].texCoords[0], sizeof(nzUInt16));
NzByteSwap(&triangles[i].vertices[1], sizeof(nzUInt16));
NzByteSwap(&texCoords[i].texCoords[1], sizeof(nzUInt16));
NzByteSwap(&triangles[i].vertices[2], sizeof(nzUInt16));
NzByteSwap(&texCoords[i].texCoords[2], sizeof(nzUInt16));
}
#endif
stream.SetCursorPos(header.offset_frames + header.framesize*startFrame);
md2_frame frame;
frame.vertices.resize(header.num_vertices);
// Pour que le modèle soit correctement aligné, on génère un quaternion que nous appliquerons à chacune des vertices
NzQuaternionf rotationQuat = NzEulerAnglesf(-90.f, 90.f, 0.f);
//NzMatrix4f rotationMatrix = NzMatrix4f::Rotate(NzEulerAnglesf(-90.f, -90.f, 0.f));
unsigned int stride = s_declaration.GetStride(nzElementStream_VertexData);
m_frames = new Frame[m_frameCount];
for (unsigned int i = 0; i < m_frameCount; ++i)
{
stream.Read(&frame.scale, sizeof(NzVector3f));
stream.Read(&frame.translate, sizeof(NzVector3f));
stream.Read(&frame.name, 16*sizeof(char));
stream.Read(&frame.vertices[0], header.num_vertices*sizeof(md2_vertex));
#if defined(NAZARA_BIG_ENDIAN)
NzByteSwap(&frame.scale.x, sizeof(float));
NzByteSwap(&frame.scale.y, sizeof(float));
NzByteSwap(&frame.scale.z, sizeof(float));
NzByteSwap(&frame.translate.x, sizeof(float));
NzByteSwap(&frame.translate.y, sizeof(float));
NzByteSwap(&frame.translate.z, sizeof(float));
#endif
m_frames[i].normal = new nzUInt8[m_vertexCount]; // Nous stockons l'indice MD2 de la normale plutôt que la normale (gain d'espace)
m_frames[i].vertices = new NzVector3f[m_vertexCount];
NzVector3f max, min;
for (unsigned int t = 0; t < header.num_tris; ++t)
{
for (unsigned int v = 0; v < 3; ++v)
{
const md2_vertex& vert = frame.vertices[triangles[t].vertices[v]];
NzVector3f vertex = rotationQuat * NzVector3f(vert.x * frame.scale.x + frame.translate.x, vert.y * frame.scale.y + frame.translate.y, vert.z * frame.scale.z + frame.translate.z);
// On fait en sorte d'avoir deux vertices de délimitation, définissant un rectangle dans l'espace
max.Maximize(vertex);
min.Minimize(vertex);
// Le MD2 ne définit pas ses vertices dans le bon ordre, il nous faut donc les ajouter dans l'ordre inverse
unsigned int index = m_vertexCount - (t*3 + v) - 1;
m_frames[i].normal[index] = vert.n;
m_frames[i].vertices[index] = vertex;
}
}
m_frames[i].aabb.SetExtends(min, max);
}
m_indexBuffer = nullptr; // Pas d'indexbuffer pour l'instant
m_vertexBuffer = new NzVertexBuffer(m_vertexCount, (3+3+2)*sizeof(float), parameters.storage, nzBufferUsage_Dynamic);
nzUInt8* ptr = reinterpret_cast<nzUInt8*>(m_vertexBuffer->Map(nzBufferAccess_WriteOnly));
if (!ptr)
{
NazaraError("Failed to map vertex buffer");
Destroy();
return false;
}
// On avance jusqu'aux dernières coordonnées de texture et on les définit dans l'ordre inverse
ptr += s_declaration.GetElement(nzElementStream_VertexData, nzElementUsage_TexCoord)->offset + stride * (m_vertexCount-1);
for (unsigned int t = 0; t < header.num_tris; ++t)
{
for (unsigned int v = 0; v < 3; ++v)
{
const md2_texCoord& texC = texCoords[triangles[t].texCoords[v]];
NzVector2f* coords = reinterpret_cast<NzVector2f*>(ptr);
coords->x = texC.u / static_cast<float>(header.skinwidth);
coords->y = 1.f - texC.v / static_cast<float>(header.skinheight);
ptr -= stride;
}
}
if (!m_vertexBuffer->Unmap())
{
NazaraError("Failed to unmap buffer");
Destroy();
return false;
}
m_vertexBuffer->AddResourceReference();
m_vertexBuffer->SetPersistent(false);
AnimateImpl(0, 0, 0.f);
return true;
}
void NzMD2Mesh::Destroy()
{
if (m_frames)
{
for (unsigned int i = 0; i < m_frameCount; ++i)
{
delete[] m_frames[i].normal;
delete[] m_frames[i].vertices;
}
delete[] m_frames;
m_frames = nullptr;
}
if (m_indexBuffer)
{
m_indexBuffer->RemoveResourceReference();
m_indexBuffer = nullptr;
}
if (m_vertexBuffer)
{
m_vertexBuffer->RemoveResourceReference();
m_vertexBuffer = nullptr;
}
}
const NzAxisAlignedBox& NzMD2Mesh::GetAABB() const
{
return m_aabb;
}
nzAnimationType NzMD2Mesh::GetAnimationType() const
{
if (m_frameCount > 1)
return nzAnimationType_Keyframe;
else
return nzAnimationType_Static;
}
unsigned int NzMD2Mesh::GetFrameCount() const
{
return m_frameCount;
}
const NzIndexBuffer* NzMD2Mesh::GetIndexBuffer() const
{
return nullptr;
//return m_indexBuffer;
}
nzPrimitiveType NzMD2Mesh::GetPrimitiveType() const
{
return nzPrimitiveType_TriangleList;
}
const NzVertexBuffer* NzMD2Mesh::GetVertexBuffer() const
{
return m_vertexBuffer;
}
const NzVertexDeclaration* NzMD2Mesh::GetVertexDeclaration() const
{
return &s_declaration;
}
void NzMD2Mesh::Initialize()
{
NzVertexElement elements[3];
elements[0].offset = 0;
elements[0].type = nzElementType_Float3;
elements[0].usage = nzElementUsage_Position;
elements[1].offset = 3*sizeof(float);
elements[1].type = nzElementType_Float3;
elements[1].usage = nzElementUsage_Normal;
elements[2].offset = 3*sizeof(float) + 3*sizeof(float);
elements[2].type = nzElementType_Float2;
elements[2].usage = nzElementUsage_TexCoord;
s_declaration.Create(elements, 3);
}
void NzMD2Mesh::Uninitialize()
{
s_declaration.Destroy();
}
void NzMD2Mesh::AnimateImpl(unsigned int frameA, unsigned int frameB, float interpolation)
{
nzUInt8* ptr = reinterpret_cast<nzUInt8*>(m_vertexBuffer->Map(nzBufferAccess_WriteOnly));
if (!ptr)
{
NazaraError("Failed to map vertex buffer");
return;
}
unsigned int stride = s_declaration.GetStride(nzElementStream_VertexData);
unsigned int positionOffset = s_declaration.GetElement(nzElementStream_VertexData, nzElementUsage_Position)->offset;
unsigned int normalOffset = s_declaration.GetElement(nzElementStream_VertexData, nzElementUsage_Normal)->offset;
Frame* fA = &m_frames[frameA];
Frame* fB = &m_frames[frameB];
for (unsigned int i = 0; i < m_vertexCount; ++i)
{
NzVector3f* position = reinterpret_cast<NzVector3f*>(ptr + positionOffset);
NzVector3f* normal = reinterpret_cast<NzVector3f*>(ptr + normalOffset);
*position = fA->vertices[i] + interpolation * (fB->vertices[i] - fA->vertices[i]);
*normal = md2Normals[fA->normal[i]] + interpolation * (md2Normals[fB->normal[i]] - md2Normals[fA->normal[i]]);
ptr += stride;
}
if (!m_vertexBuffer->Unmap())
NazaraWarning("Failed to unmap vertex buffer, expect mesh corruption");
// Interpolation de l'AABB
NzVector3f max1 = fA->aabb.GetMaximum();
NzVector3f min1 = fA->aabb.GetMinimum();
m_aabb.SetExtends(min1 + interpolation * (fB->aabb.GetMinimum() - min1), max1 + interpolation * (fB->aabb.GetMaximum() - max1));
}
NzVertexDeclaration NzMD2Mesh::s_declaration;

View File

@@ -1,352 +1,346 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Loaders/PCX.hpp>
#include <Nazara/Core/Endianness.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/File.hpp>
#include <Nazara/Core/InputStream.hpp>
#include <Nazara/Core/MemoryStream.hpp>
#include <Nazara/Utility/Image.hpp>
#include <Nazara/Utility/Debug.hpp>
// Auteur du loader original : David Henry
namespace
{
struct pcx_header
{
nzUInt8 manufacturer;
nzUInt8 version;
nzUInt8 encoding;
nzUInt8 bitsPerPixel;
nzUInt16 xmin, ymin;
nzUInt16 xmax, ymax;
nzUInt16 horzRes, vertRes;
nzUInt8 palette[48];
nzUInt8 reserved;
nzUInt8 numColorPlanes;
nzUInt16 bytesPerScanLine;
nzUInt16 paletteType;
nzUInt16 horzSize, vertSize;
nzUInt8 padding[54];
};
bool NzLoader_PCX_Check(NzInputStream& stream, const NzImageParams& parameters)
{
NazaraUnused(parameters);
nzUInt8 manufacturer;
if (stream.Read(&manufacturer, 1) != 1)
return false;
return manufacturer == 0x0a;
}
bool NzLoader_PCX_Load(NzImage* image, NzInputStream& stream, const NzImageParams& parameters)
{
NazaraUnused(parameters);
pcx_header header;
if (stream.Read(&header, sizeof(pcx_header)) != sizeof(pcx_header))
{
NazaraError("Failed to read header");
return false;
}
if (header.manufacturer != 0x0a)
{
NazaraError("Bad version number (" + NzString::Number(header.manufacturer) + ')');
return false;
}
#if defined(NAZARA_BIG_ENDIAN)
// Les fichiers PCX sont en little endian
NzByteSwap(&header.xmin, sizeof(nzUInt16));
NzByteSwap(&header.ymin, sizeof(nzUInt16));
NzByteSwap(&header.xmax, sizeof(nzUInt16));
NzByteSwap(&header.ymax, sizeof(nzUInt16));
NzByteSwap(&header.horzRes, sizeof(nzUInt16));
NzByteSwap(&header.vertRes, sizeof(nzUInt16));
NzByteSwap(&header.bytesPerScanLine, sizeof(nzUInt16));
NzByteSwap(&header.paletteType, sizeof(nzUInt16));
NzByteSwap(&header.horzSize, sizeof(nzUInt16));
NzByteSwap(&header.vertSize, sizeof(nzUInt16));
#endif
unsigned int bitCount = header.bitsPerPixel * header.numColorPlanes;
unsigned int width = header.xmax - header.xmin+1;
unsigned int height = header.ymax - header.ymin+1;
if (!image->Create(nzImageType_2D, nzPixelFormat_RGB8, width, height, 1, (parameters.levelCount > 0) ? parameters.levelCount : 1))
{
NazaraError("Failed to create image");
return false;
}
nzUInt8* pixels = image->GetPixels();
int rle_value = 0;
unsigned int rle_count = 0;
switch (bitCount)
{
case 1:
{
for (unsigned int y = 0; y < height; ++y)
{
nzUInt8* ptr = &pixels[y * width * 3];
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
}
}
rle_count--;
for (int i = 7; i >= 0; --i)
{
int colorIndex = ((rle_value & (1 << i)) > 0);
*ptr++ = header.palette[colorIndex * 3 + 0];
*ptr++ = header.palette[colorIndex * 3 + 1];
*ptr++ = header.palette[colorIndex * 3 + 2];
}
}
}
break;
}
case 4:
{
nzUInt8* colorIndex = new nzUInt8[width];
nzUInt8* line = new nzUInt8[header.bytesPerScanLine];
for (unsigned int y = 0; y < height; ++y)
{
nzUInt8* ptr = &pixels[y * width * 3];
std::memset(colorIndex, 0, width);
for (unsigned int c = 0; c < 4; ++c)
{
nzUInt8* pLine = line;
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
delete[] colorIndex;
delete[] line;
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
delete[] colorIndex;
delete[] line;
return false;
}
}
}
rle_count--;
*(pLine++) = rle_value;
}
/* compute line's color indexes */
for (unsigned int x = 0; x < width; ++x)
{
if (line[x / 8] & (128 >> (x % 8)))
colorIndex[x] += (1 << c);
}
}
/* decode scan line. color index => rgb */
for (unsigned int x = 0; x < width; ++x)
{
*ptr++ = header.palette[colorIndex[x] * 3 + 0];
*ptr++ = header.palette[colorIndex[x] * 3 + 1];
*ptr++ = header.palette[colorIndex[x] * 3 + 2];
}
}
/* release memory */
delete[] colorIndex;
delete[] line;
break;
}
case 8:
{
nzUInt8 palette[768];
/* the palette is contained in the last 769 bytes of the file */
unsigned int curPos = stream.GetCursorPos();
stream.SetCursorPos(stream.GetSize()-769);
nzUInt8 magic;
if (!stream.Read(&magic, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
/* first byte must be equal to 0x0c (12) */
if (magic != 0x0c)
{
NazaraError("Colormap's first byte must be 0x0c (0x" + NzString::Number(magic, 16) + ')');
return false;
}
/* read palette */
if (stream.Read(palette, 768) != 768)
{
NazaraError("Failed to read palette");
return false;
}
stream.SetCursorPos(curPos);
/* read pixel data */
for (unsigned int y = 0; y < height; ++y)
{
nzUInt8* ptr = &pixels[y * width * 3];
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
}
}
rle_count--;
*ptr++ = palette[rle_value * 3 + 0];
*ptr++ = palette[rle_value * 3 + 1];
*ptr++ = palette[rle_value * 3 + 2];
}
}
break;
}
case 24:
{
for (unsigned int y = 0; y < height; ++y)
{
/* for each color plane */
for (int c = 0; c < 3; ++c)
{
nzUInt8* ptr = &pixels[y * width * 4];
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
}
}
rle_count--;
ptr[c] = static_cast<nzUInt8>(rle_value);
ptr += 3;
}
}
}
break;
}
default:
NazaraError("Failed to load " + NzString::Number(bitCount) + " bitcount pcx files");
return false;
}
if (parameters.loadFormat != nzPixelFormat_Undefined)
image->Convert(parameters.loadFormat);
return true;
}
}
void NzLoaders_PCX_Register()
{
NzImageLoader::RegisterLoader("pcx", NzLoader_PCX_Check, NzLoader_PCX_Load);
}
void NzLoaders_PCX_Unregister()
{
NzImageLoader::UnregisterLoader("pcx", NzLoader_PCX_Check, NzLoader_PCX_Load);
}
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Loaders/PCX.hpp>
#include <Nazara/Core/Endianness.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/File.hpp>
#include <Nazara/Core/InputStream.hpp>
#include <Nazara/Core/MemoryStream.hpp>
#include <Nazara/Utility/Image.hpp>
#include <Nazara/Utility/Debug.hpp>
// Auteur du loader original : David Henry
namespace
{
struct pcx_header
{
nzUInt8 manufacturer;
nzUInt8 version;
nzUInt8 encoding;
nzUInt8 bitsPerPixel;
nzUInt16 xmin, ymin;
nzUInt16 xmax, ymax;
nzUInt16 horzRes, vertRes;
nzUInt8 palette[48];
nzUInt8 reserved;
nzUInt8 numColorPlanes;
nzUInt16 bytesPerScanLine;
nzUInt16 paletteType;
nzUInt16 horzSize, vertSize;
nzUInt8 padding[54];
};
bool NzLoader_PCX_Check(NzInputStream& stream, const NzImageParams& parameters)
{
NazaraUnused(parameters);
nzUInt8 manufacturer;
if (stream.Read(&manufacturer, 1) != 1)
return false;
return manufacturer == 0x0a;
}
bool NzLoader_PCX_Load(NzImage* image, NzInputStream& stream, const NzImageParams& parameters)
{
NazaraUnused(parameters);
pcx_header header;
if (stream.Read(&header, sizeof(pcx_header)) != sizeof(pcx_header))
{
NazaraError("Failed to read header");
return false;
}
#if defined(NAZARA_BIG_ENDIAN)
// Les fichiers PCX sont en little endian
NzByteSwap(&header.xmin, sizeof(nzUInt16));
NzByteSwap(&header.ymin, sizeof(nzUInt16));
NzByteSwap(&header.xmax, sizeof(nzUInt16));
NzByteSwap(&header.ymax, sizeof(nzUInt16));
NzByteSwap(&header.horzRes, sizeof(nzUInt16));
NzByteSwap(&header.vertRes, sizeof(nzUInt16));
NzByteSwap(&header.bytesPerScanLine, sizeof(nzUInt16));
NzByteSwap(&header.paletteType, sizeof(nzUInt16));
NzByteSwap(&header.horzSize, sizeof(nzUInt16));
NzByteSwap(&header.vertSize, sizeof(nzUInt16));
#endif
unsigned int bitCount = header.bitsPerPixel * header.numColorPlanes;
unsigned int width = header.xmax - header.xmin+1;
unsigned int height = header.ymax - header.ymin+1;
if (!image->Create(nzImageType_2D, nzPixelFormat_RGB8, width, height, 1, (parameters.levelCount > 0) ? parameters.levelCount : 1))
{
NazaraError("Failed to create image");
return false;
}
nzUInt8* pixels = image->GetPixels();
int rle_value = 0;
unsigned int rle_count = 0;
switch (bitCount)
{
case 1:
{
for (unsigned int y = 0; y < height; ++y)
{
nzUInt8* ptr = &pixels[y * width * 3];
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
}
}
rle_count--;
for (int i = 7; i >= 0; --i)
{
int colorIndex = ((rle_value & (1 << i)) > 0);
*ptr++ = header.palette[colorIndex * 3 + 0];
*ptr++ = header.palette[colorIndex * 3 + 1];
*ptr++ = header.palette[colorIndex * 3 + 2];
}
}
}
break;
}
case 4:
{
nzUInt8* colorIndex = new nzUInt8[width];
nzUInt8* line = new nzUInt8[header.bytesPerScanLine];
for (unsigned int y = 0; y < height; ++y)
{
nzUInt8* ptr = &pixels[y * width * 3];
std::memset(colorIndex, 0, width);
for (unsigned int c = 0; c < 4; ++c)
{
nzUInt8* pLine = line;
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
delete[] colorIndex;
delete[] line;
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
delete[] colorIndex;
delete[] line;
return false;
}
}
}
rle_count--;
*(pLine++) = rle_value;
}
/* compute line's color indexes */
for (unsigned int x = 0; x < width; ++x)
{
if (line[x / 8] & (128 >> (x % 8)))
colorIndex[x] += (1 << c);
}
}
/* decode scan line. color index => rgb */
for (unsigned int x = 0; x < width; ++x)
{
*ptr++ = header.palette[colorIndex[x] * 3 + 0];
*ptr++ = header.palette[colorIndex[x] * 3 + 1];
*ptr++ = header.palette[colorIndex[x] * 3 + 2];
}
}
/* release memory */
delete[] colorIndex;
delete[] line;
break;
}
case 8:
{
nzUInt8 palette[768];
/* the palette is contained in the last 769 bytes of the file */
unsigned int curPos = stream.GetCursorPos();
stream.SetCursorPos(stream.GetSize()-769);
nzUInt8 magic;
if (!stream.Read(&magic, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
/* first byte must be equal to 0x0c (12) */
if (magic != 0x0c)
{
NazaraError("Colormap's first byte must be 0x0c (0x" + NzString::Number(magic, 16) + ')');
return false;
}
/* read palette */
if (stream.Read(palette, 768) != 768)
{
NazaraError("Failed to read palette");
return false;
}
stream.SetCursorPos(curPos);
/* read pixel data */
for (unsigned int y = 0; y < height; ++y)
{
nzUInt8* ptr = &pixels[y * width * 3];
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
}
}
rle_count--;
*ptr++ = palette[rle_value * 3 + 0];
*ptr++ = palette[rle_value * 3 + 1];
*ptr++ = palette[rle_value * 3 + 2];
}
}
break;
}
case 24:
{
for (unsigned int y = 0; y < height; ++y)
{
/* for each color plane */
for (int c = 0; c < 3; ++c)
{
nzUInt8* ptr = &pixels[y * width * 4];
int bytes = header.bytesPerScanLine;
/* decode line number y */
while (bytes--)
{
if (rle_count == 0)
{
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
if (rle_value < 0xc0)
rle_count = 1;
else
{
rle_count = rle_value - 0xc0;
if (!stream.Read(&rle_value, 1))
{
NazaraError("Failed to read stream (byte " + NzString::Number(stream.GetCursorPos()) + ')');
return false;
}
}
}
rle_count--;
ptr[c] = static_cast<nzUInt8>(rle_value);
ptr += 3;
}
}
}
break;
}
default:
NazaraError("Failed to load " + NzString::Number(bitCount) + " bitcount pcx files");
return false;
}
if (parameters.loadFormat != nzPixelFormat_Undefined)
image->Convert(parameters.loadFormat);
return true;
}
}
void NzLoaders_PCX_Register()
{
NzImageLoader::RegisterLoader("pcx", NzLoader_PCX_Check, NzLoader_PCX_Load);
}
void NzLoaders_PCX_Unregister()
{
NzImageLoader::UnregisterLoader("pcx", NzLoader_PCX_Check, NzLoader_PCX_Load);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,186 +1,199 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Core/Error.hpp>
#include <stdexcept>
#include <Nazara/Utility/Debug.hpp>
NzStaticMesh::NzStaticMesh(const NzMesh* parent) :
NzSubMesh(parent)
{
}
NzStaticMesh::NzStaticMesh(const NzMesh* parent, const NzVertexDeclaration* vertexDeclaration, NzVertexBuffer* vertexBuffer, NzIndexBuffer* indexBuffer) :
NzSubMesh(parent)
{
#ifdef NAZARA_DEBUG
if (!Create(vertexDeclaration, vertexBuffer, indexBuffer))
{
NazaraError("Failed to create mesh");
throw std::runtime_error("Constructor failed");
}
#else
Create(vertexDeclaration, vertexBuffer, indexBuffer);
#endif
}
NzStaticMesh::~NzStaticMesh()
{
Destroy();
}
bool NzStaticMesh::Create(const NzVertexDeclaration* vertexDeclaration, NzVertexBuffer* vertexBuffer, NzIndexBuffer* indexBuffer)
{
Destroy();
#if NAZARA_UTILITY_SAFE
if (!vertexDeclaration)
{
NazaraError("Vertex declaration is null");
return false;
}
if (!vertexBuffer)
{
NazaraError("Vertex buffer is null");
return false;
}
#endif
if (indexBuffer)
{
m_indexBuffer = indexBuffer;
m_indexBuffer->AddResourceReference();
}
m_vertexBuffer = vertexBuffer;
m_vertexBuffer->AddResourceReference();
m_vertexDeclaration = vertexDeclaration;
m_vertexDeclaration->AddResourceReference();
return true;
}
void NzStaticMesh::Destroy()
{
m_aabb.SetNull();
if (m_indexBuffer)
{
m_indexBuffer->RemoveResourceReference();
m_indexBuffer = nullptr;
}
if (m_vertexBuffer)
{
m_vertexBuffer->RemoveResourceReference();
m_vertexBuffer = nullptr;
}
if (m_vertexDeclaration)
{
m_vertexDeclaration->RemoveResourceReference();
m_vertexDeclaration = nullptr;
}
}
bool NzStaticMesh::GenerateAABB()
{
if (!m_aabb.IsNull())
return true;
const NzVertexElement* position = m_vertexDeclaration->GetElement(nzElementStream_VertexData, nzElementUsage_Position);
if (position && position->type == nzElementType_Float3) // Si nous avons des positions du type Vec3
{
// On lock le buffer pour itérer sur toutes les positions et composer notre AABB
nzUInt8* buffer = reinterpret_cast<nzUInt8*>(m_vertexBuffer->Map(nzBufferAccess_ReadOnly));
if (!buffer)
{
NazaraWarning("Failed to lock vertex buffer");
return false;
}
buffer += position->offset;
unsigned int stride = m_vertexDeclaration->GetStride(nzElementStream_VertexData);
unsigned int vertexCount = m_vertexBuffer->GetVertexCount();
for (unsigned int i = 0; i < vertexCount; ++i)
{
m_aabb.ExtendTo(*reinterpret_cast<NzVector3f*>(buffer));
buffer += stride;
}
if (!m_vertexBuffer->Unmap())
NazaraWarning("Failed to unmap vertex buffer");
}
return true;
}
const NzAxisAlignedBox& NzStaticMesh::GetAABB() const
{
return m_aabb;
}
nzAnimationType NzStaticMesh::GetAnimationType() const
{
return nzAnimationType_Static;
}
unsigned int NzStaticMesh::GetFrameCount() const
{
return 1;
}
const NzIndexBuffer* NzStaticMesh::GetIndexBuffer() const
{
return m_indexBuffer;
}
nzPrimitiveType NzStaticMesh::GetPrimitiveType() const
{
return m_primitiveType;
}
const NzVertexBuffer* NzStaticMesh::GetVertexBuffer() const
{
return m_vertexBuffer;
}
const NzVertexDeclaration* NzStaticMesh::GetVertexDeclaration() const
{
return m_vertexDeclaration;
}
bool NzStaticMesh::IsAnimated() const
{
return false;
}
bool NzStaticMesh::IsValid() const
{
return m_vertexBuffer != nullptr && m_vertexDeclaration != nullptr;
}
void NzStaticMesh::SetAABB(const NzAxisAlignedBox& aabb)
{
m_aabb = aabb;
}
void NzStaticMesh::SetPrimitiveType(nzPrimitiveType primitiveType)
{
m_primitiveType = primitiveType;
}
void NzStaticMesh::AnimateImpl(unsigned int frameA, unsigned int frameB, float interpolation)
{
NazaraUnused(frameA);
NazaraUnused(frameB);
NazaraUnused(interpolation);
// Le safe mode est censé nous protéger de cet appel
NazaraError("Static mesh have no animation, please enable safe mode");
}
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Core/Error.hpp>
#include <stdexcept>
#include <Nazara/Utility/Debug.hpp>
NzStaticMesh::NzStaticMesh(const NzMesh* parent) :
NzSubMesh(parent)
{
}
NzStaticMesh::NzStaticMesh(const NzMesh* parent, const NzVertexDeclaration* vertexDeclaration, NzVertexBuffer* vertexBuffer, NzIndexBuffer* indexBuffer) :
NzSubMesh(parent)
{
#ifdef NAZARA_DEBUG
if (!Create(vertexDeclaration, vertexBuffer, indexBuffer))
{
NazaraError("Failed to create mesh");
throw std::runtime_error("Constructor failed");
}
#else
Create(vertexDeclaration, vertexBuffer, indexBuffer);
#endif
}
NzStaticMesh::~NzStaticMesh()
{
Destroy();
}
bool NzStaticMesh::Create(const NzVertexDeclaration* vertexDeclaration, NzVertexBuffer* vertexBuffer, NzIndexBuffer* indexBuffer)
{
Destroy();
#if NAZARA_UTILITY_SAFE
if (!vertexDeclaration)
{
NazaraError("Invalid vertex declaration");
return false;
}
if (!vertexBuffer)
{
NazaraError("Invalid vertex buffer");
return false;
}
#endif
if (indexBuffer)
indexBuffer->AddResourceListener(this);
m_indexBuffer = indexBuffer;
m_vertexBuffer = vertexBuffer;
m_vertexBuffer->AddResourceListener(this);
m_vertexDeclaration = vertexDeclaration;
m_vertexDeclaration->AddResourceListener(this);
return true;
}
void NzStaticMesh::Destroy()
{
m_aabb.SetNull();
if (m_indexBuffer)
{
m_indexBuffer->RemoveResourceListener(this);
m_indexBuffer = nullptr;
}
if (m_vertexBuffer)
{
m_vertexBuffer->RemoveResourceListener(this);
m_vertexBuffer = nullptr;
}
if (m_vertexDeclaration)
{
m_vertexDeclaration->RemoveResourceListener(this);
m_vertexDeclaration = nullptr;
}
}
bool NzStaticMesh::GenerateAABB()
{
if (!m_aabb.IsNull())
return true;
const NzVertexElement* position = m_vertexDeclaration->GetElement(nzElementStream_VertexData, nzElementUsage_Position);
if (position && position->type == nzElementType_Float3) // Si nous avons des positions du type Vec3
{
// On lock le buffer pour itérer sur toutes les positions et composer notre AABB
nzUInt8* buffer = reinterpret_cast<nzUInt8*>(m_vertexBuffer->Map(nzBufferAccess_ReadOnly));
if (!buffer)
{
NazaraWarning("Failed to lock vertex buffer");
return false;
}
buffer += position->offset;
unsigned int stride = m_vertexDeclaration->GetStride(nzElementStream_VertexData);
unsigned int vertexCount = m_vertexBuffer->GetVertexCount();
for (unsigned int i = 0; i < vertexCount; ++i)
{
m_aabb.ExtendTo(*reinterpret_cast<NzVector3f*>(buffer));
buffer += stride;
}
if (!m_vertexBuffer->Unmap())
NazaraWarning("Failed to unmap vertex buffer");
}
return true;
}
const NzAxisAlignedBox& NzStaticMesh::GetAABB() const
{
return m_aabb;
}
nzAnimationType NzStaticMesh::GetAnimationType() const
{
return nzAnimationType_Static;
}
unsigned int NzStaticMesh::GetFrameCount() const
{
return 1;
}
const NzIndexBuffer* NzStaticMesh::GetIndexBuffer() const
{
return m_indexBuffer;
}
nzPrimitiveType NzStaticMesh::GetPrimitiveType() const
{
return m_primitiveType;
}
const NzVertexBuffer* NzStaticMesh::GetVertexBuffer() const
{
return m_vertexBuffer;
}
const NzVertexDeclaration* NzStaticMesh::GetVertexDeclaration() const
{
return m_vertexDeclaration;
}
bool NzStaticMesh::IsAnimated() const
{
return false;
}
bool NzStaticMesh::IsValid() const
{
return m_vertexBuffer != nullptr && m_vertexDeclaration != nullptr;
}
void NzStaticMesh::SetAABB(const NzAxisAlignedBox& aabb)
{
m_aabb = aabb;
}
void NzStaticMesh::SetPrimitiveType(nzPrimitiveType primitiveType)
{
m_primitiveType = primitiveType;
}
void NzStaticMesh::AnimateImpl(unsigned int frameA, unsigned int frameB, float interpolation)
{
NazaraUnused(frameA);
NazaraUnused(frameB);
NazaraUnused(interpolation);
// Le safe mode est censé nous protéger de cet appel
NazaraError("Static mesh have no animation, please enable safe mode");
}
void NzStaticMesh::OnResourceReleased(const NzResource* resource, int index)
{
NazaraUnused(index);
if (resource == m_indexBuffer)
m_indexBuffer = nullptr;
else if (resource == m_vertexBuffer)
m_vertexBuffer = nullptr;
else if (resource == m_vertexDeclaration)
m_vertexDeclaration = nullptr;
else
NazaraInternalError("Not listening to " + NzString::Pointer(resource));
}

View File

@@ -1,346 +1,372 @@
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/VertexDeclaration.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Utility/Config.hpp>
#include <algorithm>
#include <cstring>
#include <stdexcept>
#include <vector>
#if NAZARA_UTILITY_THREADSAFE && NAZARA_THREADSAFETY_VERTEXDECLARATION
#include <Nazara/Core/ThreadSafety.hpp>
#else
#include <Nazara/Core/ThreadSafetyOff.hpp>
#endif
#include <Nazara/Utility/Debug.hpp>
namespace
{
const unsigned int size[] =
{
sizeof(nzUInt32), // nzElementType_Color
1*sizeof(double), // nzElementType_Double1
2*sizeof(double), // nzElementType_Double2
3*sizeof(double), // nzElementType_Double3
4*sizeof(double), // nzElementType_Double4
1*sizeof(float), // nzElementType_Float1
2*sizeof(float), // nzElementType_Float2
3*sizeof(float), // nzElementType_Float3
4*sizeof(float) // nzElementType_Float4
};
bool VertexElementCompare(const NzVertexElement& elementA, const NzVertexElement& elementB)
{
// Nous classons d'abord par stream
if (elementA.stream == elementB.stream)
{
// Ensuite par usage
if (elementA.usage == elementB.usage)
// Et finalement par usageIndex
return elementA.usageIndex < elementB.usageIndex;
else
return elementA.usage < elementB.usage;
}
else
return elementA.stream < elementB.stream;
}
}
struct NzVertexDeclarationImpl
{
std::vector<NzVertexElement> elements;
int elementPos[nzElementStream_Max+1][nzElementUsage_Max+1];
int streamPos[nzElementStream_Max+1];
unsigned int stride[nzElementStream_Max+1] = {0};
unsigned short refCount = 1;
NazaraMutex(mutex)
};
NzVertexDeclaration::NzVertexDeclaration(const NzVertexElement* elements, unsigned int elementCount)
{
#ifdef NAZARA_DEBUG
if (!Create(elements, elementCount))
{
NazaraError("Failed to create declaration");
throw std::runtime_error("Constructor failed");
}
#else
Create(elements, elementCount);
#endif
}
NzVertexDeclaration::NzVertexDeclaration(const NzVertexDeclaration& declaration) :
NzResource(),
m_sharedImpl(declaration.m_sharedImpl)
{
if (m_sharedImpl)
{
NazaraMutexLock(m_sharedImpl->mutex);
m_sharedImpl->refCount++;
NazaraMutexUnlock(m_sharedImpl->mutex);
}
}
NzVertexDeclaration::NzVertexDeclaration(NzVertexDeclaration&& declaration) noexcept :
m_sharedImpl(declaration.m_sharedImpl)
{
declaration.m_sharedImpl = nullptr;
}
NzVertexDeclaration::~NzVertexDeclaration()
{
Destroy();
}
bool NzVertexDeclaration::Create(const NzVertexElement* elements, unsigned int elementCount)
{
Destroy();
#if NAZARA_UTILITY_SAFE
if (!elements || elementCount == 0)
{
NazaraError("No element");
return false;
}
#endif
NzVertexDeclarationImpl* impl = new NzVertexDeclarationImpl;
std::memset(&impl->elementPos, -1, (nzElementStream_Max+1)*(nzElementUsage_Max+1)*sizeof(int));
std::memset(&impl->streamPos, -1, (nzElementStream_Max+1)*sizeof(int));
// On copie et trie les éléments
impl->elements.resize(elementCount);
std::memcpy(&impl->elements[0], elements, elementCount*sizeof(NzVertexElement));
std::sort(impl->elements.begin(), impl->elements.end(), VertexElementCompare);
for (unsigned int i = 0; i < elementCount; ++i)
{
NzVertexElement& current = impl->elements[i];
#if NAZARA_UTILITY_SAFE
// Notre tableau étant trié, s'il y a collision, les deux éléments identiques se suivent...
if (i > 0)
{
NzVertexElement& previous = impl->elements[i-1]; // On accède à l'élément précédent
if (previous.usage == current.usage && previous.usageIndex == current.usageIndex && previous.stream == current.stream)
{
// Les deux éléments sont identiques là où ils ne devraient pas, nous avons une collision...
NazaraError("Element usage 0x" + NzString::Number(current.usage, 16) + " collision with usage index " + NzString::Number(current.usageIndex) + " on stream 0x" + NzString::Number(current.stream, 16));
delete impl;
return false;
}
}
#endif
if (current.usageIndex == 0)
impl->elementPos[current.stream][current.usage] = i;
if (impl->streamPos[current.stream] == -1)
impl->streamPos[current.stream] = i; // Premier élément du stream (via le triage)
impl->stride[current.stream] += size[current.type];
}
#if NAZARA_UTILITY_FORCE_DECLARATION_STRIDE_MULTIPLE_OF_32
for (unsigned int& stride : impl->stride)
stride = ((static_cast<int>(stride)-1)/32+1)*32;
#endif
m_sharedImpl = impl;
return true;
}
void NzVertexDeclaration::Destroy()
{
if (!m_sharedImpl)
return;
NazaraMutexLock(m_sharedImpl->mutex);
bool freeSharedImpl = (--m_sharedImpl->refCount == 0);
NazaraMutexUnlock(m_sharedImpl->mutex);
if (freeSharedImpl)
delete m_sharedImpl;
m_sharedImpl = nullptr;
}
const NzVertexElement* NzVertexDeclaration::GetElement(unsigned int i) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return nullptr;
}
if (i >= m_sharedImpl->elements.size())
{
NazaraError("Element index out of range (" + NzString::Number(i) + " >= " + NzString::Number(m_sharedImpl->elements.size()) + ')');
return nullptr;
}
#endif
return &m_sharedImpl->elements[i];
}
const NzVertexElement* NzVertexDeclaration::GetElement(nzElementStream stream, unsigned int i) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return nullptr;
}
int streamPos = m_sharedImpl->streamPos[stream];
if (streamPos == -1)
{
NazaraError("Declaration has no stream 0x" + NzString::Number(stream, 16));
return nullptr;
}
unsigned int upperLimit = GetElementCount(stream);
if (i >= upperLimit)
{
NazaraError("Element index out of range (" + NzString::Number(i) + " >= " + NzString::Number(upperLimit) + ')');
return nullptr;
}
#endif
return &m_sharedImpl->elements[m_sharedImpl->streamPos[stream]+i];
}
const NzVertexElement* NzVertexDeclaration::GetElement(nzElementStream stream, nzElementUsage usage, unsigned int usageIndex) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return nullptr;
}
#endif
int elementPos = m_sharedImpl->elementPos[stream][usage];
if (elementPos == -1)
return nullptr;
elementPos += usageIndex;
if (static_cast<unsigned int>(elementPos) >= m_sharedImpl->elements.size())
return nullptr;
NzVertexElement& element = m_sharedImpl->elements[elementPos];
if (element.stream != stream || element.usage != usage || element.usageIndex != usageIndex)
return nullptr;
return &element;
}
unsigned int NzVertexDeclaration::GetElementCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return 0;
}
#endif
return m_sharedImpl->elements.size();
}
unsigned int NzVertexDeclaration::GetElementCount(nzElementStream stream) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return 0;
}
#endif
int streamPos = m_sharedImpl->streamPos[stream];
if (streamPos == -1)
return 0;
unsigned int upperLimit = 0;
if (stream == nzElementStream_Max)
upperLimit = m_sharedImpl->elements.size();
else
{
for (unsigned int upperStream = stream+1; upperStream <= nzElementStream_Max; ++upperStream)
{
if (m_sharedImpl->streamPos[upperStream] != -1)
{
upperLimit = m_sharedImpl->streamPos[upperStream];
break;
}
else if (upperStream == nzElementStream_Max) // Dernier stream, toujours pas de limite
upperLimit = m_sharedImpl->elements.size();
}
}
return upperLimit-streamPos;
}
unsigned int NzVertexDeclaration::GetStride(nzElementStream stream) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return 0;
}
#endif
return m_sharedImpl->stride[stream];
}
bool NzVertexDeclaration::HasStream(nzElementStream stream) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return false;
}
#endif
return m_sharedImpl->streamPos[stream] != -1;
}
bool NzVertexDeclaration::IsValid() const
{
return m_sharedImpl != nullptr;
}
NzVertexDeclaration& NzVertexDeclaration::operator=(const NzVertexDeclaration& declaration)
{
Destroy();
m_sharedImpl = declaration.m_sharedImpl;
if (m_sharedImpl)
{
NazaraMutexLock(m_sharedImpl->mutex);
m_sharedImpl->refCount++;
NazaraMutexUnlock(m_sharedImpl->mutex);
}
return *this;
}
NzVertexDeclaration& NzVertexDeclaration::operator=(NzVertexDeclaration&& declaration) noexcept
{
Destroy();
m_sharedImpl = declaration.m_sharedImpl;
declaration.m_sharedImpl = nullptr;
return *this;
}
// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/VertexDeclaration.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Utility/Config.hpp>
#include <algorithm>
#include <cstring>
#include <stdexcept>
#include <vector>
#if NAZARA_UTILITY_THREADSAFE && NAZARA_THREADSAFETY_VERTEXDECLARATION
#include <Nazara/Core/ThreadSafety.hpp>
#else
#include <Nazara/Core/ThreadSafetyOff.hpp>
#endif
#include <Nazara/Utility/Debug.hpp>
namespace
{
const unsigned int elementCount[] =
{
4, // nzElementType_Color
1, // nzElementType_Double1
2, // nzElementType_Double2
3, // nzElementType_Double3
4, // nzElementType_Double4
1, // nzElementType_Float1
2, // nzElementType_Float2
3, // nzElementType_Float3
4 // nzElementType_Float4
};
const unsigned int elementSize[] =
{
4*sizeof(nzUInt8), // nzElementType_Color
1*sizeof(double), // nzElementType_Double1
2*sizeof(double), // nzElementType_Double2
3*sizeof(double), // nzElementType_Double3
4*sizeof(double), // nzElementType_Double4
1*sizeof(float), // nzElementType_Float1
2*sizeof(float), // nzElementType_Float2
3*sizeof(float), // nzElementType_Float3
4*sizeof(float) // nzElementType_Float4
};
bool VertexElementCompare(const NzVertexElement& elementA, const NzVertexElement& elementB)
{
// Nous classons d'abord par stream
if (elementA.stream == elementB.stream)
{
// Ensuite par usage
if (elementA.usage == elementB.usage)
// Et finalement par usageIndex
return elementA.usageIndex < elementB.usageIndex;
else
return elementA.usage < elementB.usage;
}
else
return elementA.stream < elementB.stream;
}
}
struct NzVertexDeclarationImpl
{
std::vector<NzVertexElement> elements;
int elementPos[nzElementStream_Max+1][nzElementUsage_Max+1];
int streamPos[nzElementStream_Max+1];
unsigned int stride[nzElementStream_Max+1] = {0};
unsigned short refCount = 1;
NazaraMutex(mutex)
};
NzVertexDeclaration::NzVertexDeclaration(const NzVertexElement* elements, unsigned int elementCount)
{
#ifdef NAZARA_DEBUG
if (!Create(elements, elementCount))
{
NazaraError("Failed to create declaration");
throw std::runtime_error("Constructor failed");
}
#else
Create(elements, elementCount);
#endif
}
NzVertexDeclaration::NzVertexDeclaration(const NzVertexDeclaration& declaration) :
NzResource(),
m_sharedImpl(declaration.m_sharedImpl)
{
if (m_sharedImpl)
{
NazaraMutexLock(m_sharedImpl->mutex);
m_sharedImpl->refCount++;
NazaraMutexUnlock(m_sharedImpl->mutex);
}
}
NzVertexDeclaration::NzVertexDeclaration(NzVertexDeclaration&& declaration) noexcept :
m_sharedImpl(declaration.m_sharedImpl)
{
declaration.m_sharedImpl = nullptr;
}
NzVertexDeclaration::~NzVertexDeclaration()
{
Destroy();
}
bool NzVertexDeclaration::Create(const NzVertexElement* elements, unsigned int elementCount)
{
Destroy();
#if NAZARA_UTILITY_SAFE
if (!elements || elementCount == 0)
{
NazaraError("No element");
return false;
}
#endif
NzVertexDeclarationImpl* impl = new NzVertexDeclarationImpl;
std::memset(&impl->elementPos, -1, (nzElementStream_Max+1)*(nzElementUsage_Max+1)*sizeof(int));
std::memset(&impl->streamPos, -1, (nzElementStream_Max+1)*sizeof(int));
// On copie et trie les éléments
impl->elements.resize(elementCount);
std::memcpy(&impl->elements[0], elements, elementCount*sizeof(NzVertexElement));
std::sort(impl->elements.begin(), impl->elements.end(), VertexElementCompare);
for (unsigned int i = 0; i < elementCount; ++i)
{
NzVertexElement& current = impl->elements[i];
#if NAZARA_UTILITY_SAFE
// Notre tableau étant trié, s'il y a collision, les deux éléments identiques se suivent...
if (i > 0)
{
NzVertexElement& previous = impl->elements[i-1]; // On accède à l'élément précédent
if (previous.usage == current.usage && previous.usageIndex == current.usageIndex && previous.stream == current.stream)
{
// Les deux éléments sont identiques là où ils ne devraient pas, nous avons une collision...
NazaraError("Element usage 0x" + NzString::Number(current.usage, 16) + " collision with usage index " + NzString::Number(current.usageIndex) + " on stream 0x" + NzString::Number(current.stream, 16));
delete impl;
return false;
}
}
#endif
if (current.usageIndex == 0)
impl->elementPos[current.stream][current.usage] = i;
if (impl->streamPos[current.stream] == -1)
impl->streamPos[current.stream] = i; // Premier élément du stream (via le triage)
impl->stride[current.stream] += elementSize[current.type];
}
#if NAZARA_UTILITY_FORCE_DECLARATION_STRIDE_MULTIPLE_OF_32
for (unsigned int& stride : impl->stride)
stride = ((static_cast<int>(stride)-1)/32+1)*32;
#endif
m_sharedImpl = impl;
NotifyCreated();
return true;
}
void NzVertexDeclaration::Destroy()
{
if (!m_sharedImpl)
return;
NotifyDestroy();
NazaraMutexLock(m_sharedImpl->mutex);
bool freeSharedImpl = (--m_sharedImpl->refCount == 0);
NazaraMutexUnlock(m_sharedImpl->mutex);
if (freeSharedImpl)
delete m_sharedImpl;
m_sharedImpl = nullptr;
}
const NzVertexElement* NzVertexDeclaration::GetElement(unsigned int i) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return nullptr;
}
if (i >= m_sharedImpl->elements.size())
{
NazaraError("Element index out of range (" + NzString::Number(i) + " >= " + NzString::Number(m_sharedImpl->elements.size()) + ')');
return nullptr;
}
#endif
return &m_sharedImpl->elements[i];
}
const NzVertexElement* NzVertexDeclaration::GetElement(nzElementStream stream, unsigned int i) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return nullptr;
}
int streamPos = m_sharedImpl->streamPos[stream];
if (streamPos == -1)
{
NazaraError("Declaration has no stream 0x" + NzString::Number(stream, 16));
return nullptr;
}
unsigned int upperLimit = GetElementCount(stream);
if (i >= upperLimit)
{
NazaraError("Element index out of range (" + NzString::Number(i) + " >= " + NzString::Number(upperLimit) + ')');
return nullptr;
}
#endif
return &m_sharedImpl->elements[m_sharedImpl->streamPos[stream]+i];
}
const NzVertexElement* NzVertexDeclaration::GetElement(nzElementStream stream, nzElementUsage usage, unsigned int usageIndex) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return nullptr;
}
#endif
int elementPos = m_sharedImpl->elementPos[stream][usage];
if (elementPos == -1)
return nullptr;
elementPos += usageIndex;
if (static_cast<unsigned int>(elementPos) >= m_sharedImpl->elements.size())
return nullptr;
NzVertexElement& element = m_sharedImpl->elements[elementPos];
if (element.stream != stream || element.usage != usage || element.usageIndex != usageIndex)
return nullptr;
return &element;
}
unsigned int NzVertexDeclaration::GetElementCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return 0;
}
#endif
return m_sharedImpl->elements.size();
}
unsigned int NzVertexDeclaration::GetElementCount(nzElementStream stream) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return 0;
}
#endif
int streamPos = m_sharedImpl->streamPos[stream];
if (streamPos == -1)
return 0;
unsigned int upperLimit = 0;
if (stream == nzElementStream_Max)
upperLimit = m_sharedImpl->elements.size();
else
{
for (unsigned int upperStream = stream+1; upperStream <= nzElementStream_Max; ++upperStream)
{
if (m_sharedImpl->streamPos[upperStream] != -1)
{
upperLimit = m_sharedImpl->streamPos[upperStream];
break;
}
else if (upperStream == nzElementStream_Max) // Dernier stream, toujours pas de limite
upperLimit = m_sharedImpl->elements.size();
}
}
return upperLimit-streamPos;
}
unsigned int NzVertexDeclaration::GetStride(nzElementStream stream) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return 0;
}
#endif
return m_sharedImpl->stride[stream];
}
bool NzVertexDeclaration::HasStream(nzElementStream stream) const
{
#if NAZARA_UTILITY_SAFE
if (!m_sharedImpl)
{
NazaraError("Declaration not created");
return false;
}
#endif
return m_sharedImpl->streamPos[stream] != -1;
}
bool NzVertexDeclaration::IsValid() const
{
return m_sharedImpl != nullptr;
}
NzVertexDeclaration& NzVertexDeclaration::operator=(const NzVertexDeclaration& declaration)
{
Destroy();
m_sharedImpl = declaration.m_sharedImpl;
if (m_sharedImpl)
{
NazaraMutexLock(m_sharedImpl->mutex);
m_sharedImpl->refCount++;
NazaraMutexUnlock(m_sharedImpl->mutex);
}
return *this;
}
NzVertexDeclaration& NzVertexDeclaration::operator=(NzVertexDeclaration&& declaration) noexcept
{
Destroy();
m_sharedImpl = declaration.m_sharedImpl;
declaration.m_sharedImpl = nullptr;
return *this;
}
unsigned int NzVertexDeclaration::GetElementCount(nzElementType type)
{
return elementCount[type];
}
unsigned int NzVertexDeclaration::GetElementSize(nzElementType type)
{
return elementSize[type];
}

File diff suppressed because it is too large Load Diff