Remove unused thirdparty headers

Lua support got removed and kiwi is handled by xmake
This commit is contained in:
SirLynix 2022-04-07 13:38:16 +02:00
parent ad80f3e0ec
commit e34bedbfa8
22 changed files with 0 additions and 4833 deletions

View File

@ -1,256 +0,0 @@
/*
** $Id: lauxlib.h,v 1.128 2014/10/29 16:11:17 roberto Exp $
** Auxiliary functions for building Lua libraries
** See Copyright Notice in lua.h
*/
#ifndef lauxlib_h
#define lauxlib_h
#include <stddef.h>
#include <stdio.h>
#include "lua.h"
/* extra error code for 'luaL_load' */
#define LUA_ERRFILE (LUA_ERRERR+1)
typedef struct luaL_Reg {
const char *name;
lua_CFunction func;
} luaL_Reg;
#define LUAL_NUMSIZES (sizeof(lua_Integer)*16 + sizeof(lua_Number))
LUALIB_API void (luaL_checkversion_) (lua_State *L, lua_Number ver, size_t sz);
#define luaL_checkversion(L) \
luaL_checkversion_(L, LUA_VERSION_NUM, LUAL_NUMSIZES)
LUALIB_API int (luaL_getmetafield) (lua_State *L, int obj, const char *e);
LUALIB_API int (luaL_callmeta) (lua_State *L, int obj, const char *e);
LUALIB_API const char *(luaL_tolstring) (lua_State *L, int idx, size_t *len);
LUALIB_API int (luaL_argerror) (lua_State *L, int arg, const char *extramsg);
LUALIB_API const char *(luaL_checklstring) (lua_State *L, int arg,
size_t *l);
LUALIB_API const char *(luaL_optlstring) (lua_State *L, int arg,
const char *def, size_t *l);
LUALIB_API lua_Number (luaL_checknumber) (lua_State *L, int arg);
LUALIB_API lua_Number (luaL_optnumber) (lua_State *L, int arg, lua_Number def);
LUALIB_API lua_Integer (luaL_checkinteger) (lua_State *L, int arg);
LUALIB_API lua_Integer (luaL_optinteger) (lua_State *L, int arg,
lua_Integer def);
LUALIB_API void (luaL_checkstack) (lua_State *L, int sz, const char *msg);
LUALIB_API void (luaL_checktype) (lua_State *L, int arg, int t);
LUALIB_API void (luaL_checkany) (lua_State *L, int arg);
LUALIB_API int (luaL_newmetatable) (lua_State *L, const char *tname);
LUALIB_API void (luaL_setmetatable) (lua_State *L, const char *tname);
LUALIB_API void *(luaL_testudata) (lua_State *L, int ud, const char *tname);
LUALIB_API void *(luaL_checkudata) (lua_State *L, int ud, const char *tname);
LUALIB_API void (luaL_where) (lua_State *L, int lvl);
LUALIB_API int (luaL_error) (lua_State *L, const char *fmt, ...);
LUALIB_API int (luaL_checkoption) (lua_State *L, int arg, const char *def,
const char *const lst[]);
LUALIB_API int (luaL_fileresult) (lua_State *L, int stat, const char *fname);
LUALIB_API int (luaL_execresult) (lua_State *L, int stat);
/* pre-defined references */
#define LUA_NOREF (-2)
#define LUA_REFNIL (-1)
LUALIB_API int (luaL_ref) (lua_State *L, int t);
LUALIB_API void (luaL_unref) (lua_State *L, int t, int ref);
LUALIB_API int (luaL_loadfilex) (lua_State *L, const char *filename,
const char *mode);
#define luaL_loadfile(L,f) luaL_loadfilex(L,f,NULL)
LUALIB_API int (luaL_loadbufferx) (lua_State *L, const char *buff, size_t sz,
const char *name, const char *mode);
LUALIB_API int (luaL_loadstring) (lua_State *L, const char *s);
LUALIB_API lua_State *(luaL_newstate) (void);
LUALIB_API lua_Integer (luaL_len) (lua_State *L, int idx);
LUALIB_API const char *(luaL_gsub) (lua_State *L, const char *s, const char *p,
const char *r);
LUALIB_API void (luaL_setfuncs) (lua_State *L, const luaL_Reg *l, int nup);
LUALIB_API int (luaL_getsubtable) (lua_State *L, int idx, const char *fname);
LUALIB_API void (luaL_traceback) (lua_State *L, lua_State *L1,
const char *msg, int level);
LUALIB_API void (luaL_requiref) (lua_State *L, const char *modname,
lua_CFunction openf, int glb);
/*
** ===============================================================
** some useful macros
** ===============================================================
*/
#define luaL_newlibtable(L,l) \
lua_createtable(L, 0, sizeof(l)/sizeof((l)[0]) - 1)
#define luaL_newlib(L,l) \
(luaL_checkversion(L), luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
#define luaL_argcheck(L, cond,arg,extramsg) \
((void)((cond) || luaL_argerror(L, (arg), (extramsg))))
#define luaL_checkstring(L,n) (luaL_checklstring(L, (n), NULL))
#define luaL_optstring(L,n,d) (luaL_optlstring(L, (n), (d), NULL))
#define luaL_typename(L,i) lua_typename(L, lua_type(L,(i)))
#define luaL_dofile(L, fn) \
(luaL_loadfile(L, fn) || lua_pcall(L, 0, LUA_MULTRET, 0))
#define luaL_dostring(L, s) \
(luaL_loadstring(L, s) || lua_pcall(L, 0, LUA_MULTRET, 0))
#define luaL_getmetatable(L,n) (lua_getfield(L, LUA_REGISTRYINDEX, (n)))
#define luaL_opt(L,f,n,d) (lua_isnoneornil(L,(n)) ? (d) : f(L,(n)))
#define luaL_loadbuffer(L,s,sz,n) luaL_loadbufferx(L,s,sz,n,NULL)
/*
** {======================================================
** Generic Buffer manipulation
** =======================================================
*/
typedef struct luaL_Buffer {
char *b; /* buffer address */
size_t size; /* buffer size */
size_t n; /* number of characters in buffer */
lua_State *L;
char initb[LUAL_BUFFERSIZE]; /* initial buffer */
} luaL_Buffer;
#define luaL_addchar(B,c) \
((void)((B)->n < (B)->size || luaL_prepbuffsize((B), 1)), \
((B)->b[(B)->n++] = (c)))
#define luaL_addsize(B,s) ((B)->n += (s))
LUALIB_API void (luaL_buffinit) (lua_State *L, luaL_Buffer *B);
LUALIB_API char *(luaL_prepbuffsize) (luaL_Buffer *B, size_t sz);
LUALIB_API void (luaL_addlstring) (luaL_Buffer *B, const char *s, size_t l);
LUALIB_API void (luaL_addstring) (luaL_Buffer *B, const char *s);
LUALIB_API void (luaL_addvalue) (luaL_Buffer *B);
LUALIB_API void (luaL_pushresult) (luaL_Buffer *B);
LUALIB_API void (luaL_pushresultsize) (luaL_Buffer *B, size_t sz);
LUALIB_API char *(luaL_buffinitsize) (lua_State *L, luaL_Buffer *B, size_t sz);
#define luaL_prepbuffer(B) luaL_prepbuffsize(B, LUAL_BUFFERSIZE)
/* }====================================================== */
/*
** {======================================================
** File handles for IO library
** =======================================================
*/
/*
** A file handle is a userdata with metatable 'LUA_FILEHANDLE' and
** initial structure 'luaL_Stream' (it may contain other fields
** after that initial structure).
*/
#define LUA_FILEHANDLE "FILE*"
typedef struct luaL_Stream {
FILE *f; /* stream (NULL for incompletely created streams) */
lua_CFunction closef; /* to close stream (NULL for closed streams) */
} luaL_Stream;
/* }====================================================== */
/* compatibility with old module system */
#if defined(LUA_COMPAT_MODULE)
LUALIB_API void (luaL_pushmodule) (lua_State *L, const char *modname,
int sizehint);
LUALIB_API void (luaL_openlib) (lua_State *L, const char *libname,
const luaL_Reg *l, int nup);
#define luaL_register(L,n,l) (luaL_openlib(L,(n),(l),0))
#endif
/*
** {==================================================================
** "Abstraction Layer" for basic report of messages and errors
** ===================================================================
*/
/* print a string */
#if !defined(lua_writestring)
#define lua_writestring(s,l) fwrite((s), sizeof(char), (l), stdout)
#endif
/* print a newline and flush the output */
#if !defined(lua_writeline)
#define lua_writeline() (lua_writestring("\n", 1), fflush(stdout))
#endif
/* print an error message */
#if !defined(lua_writestringerror)
#define lua_writestringerror(s,p) \
(fprintf(stderr, (s), (p)), fflush(stderr))
#endif
/* }================================================================== */
/*
** {============================================================
** Compatibility with deprecated conversions
** =============================================================
*/
#if defined(LUA_COMPAT_APIINTCASTS)
#define luaL_checkunsigned(L,a) ((lua_Unsigned)luaL_checkinteger(L,a))
#define luaL_optunsigned(L,a,d) \
((lua_Unsigned)luaL_optinteger(L,a,(lua_Integer)(d)))
#define luaL_checkint(L,n) ((int)luaL_checkinteger(L, (n)))
#define luaL_optint(L,n,d) ((int)luaL_optinteger(L, (n), (d)))
#define luaL_checklong(L,n) ((long)luaL_checkinteger(L, (n)))
#define luaL_optlong(L,n,d) ((long)luaL_optinteger(L, (n), (d)))
#endif
/* }============================================================ */
#endif

View File

@ -1,485 +0,0 @@
/*
** $Id: lua.h,v 1.325 2014/12/26 17:24:27 roberto Exp $
** Lua - A Scripting Language
** Lua.org, PUC-Rio, Brazil (http://www.lua.org)
** See Copyright Notice at the end of this file
*/
#ifndef lua_h
#define lua_h
#include <stdarg.h>
#include <stddef.h>
#include <Lua/luaconf.h>
#define LUA_VERSION_MAJOR "5"
#define LUA_VERSION_MINOR "3"
#define LUA_VERSION_NUM 503
#define LUA_VERSION_RELEASE "0"
#define LUA_VERSION "Lua " LUA_VERSION_MAJOR "." LUA_VERSION_MINOR
#define LUA_RELEASE LUA_VERSION "." LUA_VERSION_RELEASE
#define LUA_COPYRIGHT LUA_RELEASE " Copyright (C) 1994-2015 Lua.org, PUC-Rio"
#define LUA_AUTHORS "R. Ierusalimschy, L. H. de Figueiredo, W. Celes"
/* mark for precompiled code ('<esc>Lua') */
#define LUA_SIGNATURE "\x1bLua"
/* option for multiple returns in 'lua_pcall' and 'lua_call' */
#define LUA_MULTRET (-1)
/*
** pseudo-indices
*/
#define LUA_REGISTRYINDEX LUAI_FIRSTPSEUDOIDX
#define lua_upvalueindex(i) (LUA_REGISTRYINDEX - (i))
/* thread status */
#define LUA_OK 0
#define LUA_YIELD 1
#define LUA_ERRRUN 2
#define LUA_ERRSYNTAX 3
#define LUA_ERRMEM 4
#define LUA_ERRGCMM 5
#define LUA_ERRERR 6
typedef struct lua_State lua_State;
/*
** basic types
*/
#define LUA_TNONE (-1)
#define LUA_TNIL 0
#define LUA_TBOOLEAN 1
#define LUA_TLIGHTUSERDATA 2
#define LUA_TNUMBER 3
#define LUA_TSTRING 4
#define LUA_TTABLE 5
#define LUA_TFUNCTION 6
#define LUA_TUSERDATA 7
#define LUA_TTHREAD 8
#define LUA_NUMTAGS 9
/* minimum Lua stack available to a C function */
#define LUA_MINSTACK 20
/* predefined values in the registry */
#define LUA_RIDX_MAINTHREAD 1
#define LUA_RIDX_GLOBALS 2
#define LUA_RIDX_LAST LUA_RIDX_GLOBALS
/* type of numbers in Lua */
typedef LUA_NUMBER lua_Number;
/* type for integer functions */
typedef LUA_INTEGER lua_Integer;
/* unsigned integer type */
typedef LUA_UNSIGNED lua_Unsigned;
/* type for continuation-function contexts */
typedef LUA_KCONTEXT lua_KContext;
/*
** Type for C functions registered with Lua
*/
typedef int (*lua_CFunction) (lua_State *L);
/*
** Type for continuation functions
*/
typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);
/*
** Type for functions that read/write blocks when loading/dumping Lua chunks
*/
typedef const char * (*lua_Reader) (lua_State *L, void *ud, size_t *sz);
typedef int (*lua_Writer) (lua_State *L, const void *p, size_t sz, void *ud);
/*
** Type for memory-allocation functions
*/
typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize);
/*
** generic extra include file
*/
#if defined(LUA_USER_H)
#include LUA_USER_H
#endif
/*
** RCS ident string
*/
extern const char lua_ident[];
/*
** state manipulation
*/
LUA_API lua_State *(lua_newstate) (lua_Alloc f, void *ud);
LUA_API void (lua_close) (lua_State *L);
LUA_API lua_State *(lua_newthread) (lua_State *L);
LUA_API lua_CFunction (lua_atpanic) (lua_State *L, lua_CFunction panicf);
LUA_API const lua_Number *(lua_version) (lua_State *L);
/*
** basic stack manipulation
*/
LUA_API int (lua_absindex) (lua_State *L, int idx);
LUA_API int (lua_gettop) (lua_State *L);
LUA_API void (lua_settop) (lua_State *L, int idx);
LUA_API void (lua_pushvalue) (lua_State *L, int idx);
LUA_API void (lua_rotate) (lua_State *L, int idx, int n);
LUA_API void (lua_copy) (lua_State *L, int fromidx, int toidx);
LUA_API int (lua_checkstack) (lua_State *L, int n);
LUA_API void (lua_xmove) (lua_State *from, lua_State *to, int n);
/*
** access functions (stack -> C)
*/
LUA_API int (lua_isnumber) (lua_State *L, int idx);
LUA_API int (lua_isstring) (lua_State *L, int idx);
LUA_API int (lua_iscfunction) (lua_State *L, int idx);
LUA_API int (lua_isinteger) (lua_State *L, int idx);
LUA_API int (lua_isuserdata) (lua_State *L, int idx);
LUA_API int (lua_type) (lua_State *L, int idx);
LUA_API const char *(lua_typename) (lua_State *L, int tp);
LUA_API lua_Number (lua_tonumberx) (lua_State *L, int idx, int *isnum);
LUA_API lua_Integer (lua_tointegerx) (lua_State *L, int idx, int *isnum);
LUA_API int (lua_toboolean) (lua_State *L, int idx);
LUA_API const char *(lua_tolstring) (lua_State *L, int idx, size_t *len);
LUA_API size_t (lua_rawlen) (lua_State *L, int idx);
LUA_API lua_CFunction (lua_tocfunction) (lua_State *L, int idx);
LUA_API void *(lua_touserdata) (lua_State *L, int idx);
LUA_API lua_State *(lua_tothread) (lua_State *L, int idx);
LUA_API const void *(lua_topointer) (lua_State *L, int idx);
/*
** Comparison and arithmetic functions
*/
#define LUA_OPADD 0 /* ORDER TM, ORDER OP */
#define LUA_OPSUB 1
#define LUA_OPMUL 2
#define LUA_OPMOD 3
#define LUA_OPPOW 4
#define LUA_OPDIV 5
#define LUA_OPIDIV 6
#define LUA_OPBAND 7
#define LUA_OPBOR 8
#define LUA_OPBXOR 9
#define LUA_OPSHL 10
#define LUA_OPSHR 11
#define LUA_OPUNM 12
#define LUA_OPBNOT 13
LUA_API void (lua_arith) (lua_State *L, int op);
#define LUA_OPEQ 0
#define LUA_OPLT 1
#define LUA_OPLE 2
LUA_API int (lua_rawequal) (lua_State *L, int idx1, int idx2);
LUA_API int (lua_compare) (lua_State *L, int idx1, int idx2, int op);
/*
** push functions (C -> stack)
*/
LUA_API void (lua_pushnil) (lua_State *L);
LUA_API void (lua_pushnumber) (lua_State *L, lua_Number n);
LUA_API void (lua_pushinteger) (lua_State *L, lua_Integer n);
LUA_API const char *(lua_pushlstring) (lua_State *L, const char *s, size_t len);
LUA_API const char *(lua_pushstring) (lua_State *L, const char *s);
LUA_API const char *(lua_pushvfstring) (lua_State *L, const char *fmt,
va_list argp);
LUA_API const char *(lua_pushfstring) (lua_State *L, const char *fmt, ...);
LUA_API void (lua_pushcclosure) (lua_State *L, lua_CFunction fn, int n);
LUA_API void (lua_pushboolean) (lua_State *L, int b);
LUA_API void (lua_pushlightuserdata) (lua_State *L, void *p);
LUA_API int (lua_pushthread) (lua_State *L);
/*
** get functions (Lua -> stack)
*/
LUA_API int (lua_getglobal) (lua_State *L, const char *name);
LUA_API int (lua_gettable) (lua_State *L, int idx);
LUA_API int (lua_getfield) (lua_State *L, int idx, const char *k);
LUA_API int (lua_geti) (lua_State *L, int idx, lua_Integer n);
LUA_API int (lua_rawget) (lua_State *L, int idx);
LUA_API int (lua_rawgeti) (lua_State *L, int idx, lua_Integer n);
LUA_API int (lua_rawgetp) (lua_State *L, int idx, const void *p);
LUA_API void (lua_createtable) (lua_State *L, int narr, int nrec);
LUA_API void *(lua_newuserdata) (lua_State *L, size_t sz);
LUA_API int (lua_getmetatable) (lua_State *L, int objindex);
LUA_API int (lua_getuservalue) (lua_State *L, int idx);
/*
** set functions (stack -> Lua)
*/
LUA_API void (lua_setglobal) (lua_State *L, const char *name);
LUA_API void (lua_settable) (lua_State *L, int idx);
LUA_API void (lua_setfield) (lua_State *L, int idx, const char *k);
LUA_API void (lua_seti) (lua_State *L, int idx, lua_Integer n);
LUA_API void (lua_rawset) (lua_State *L, int idx);
LUA_API void (lua_rawseti) (lua_State *L, int idx, lua_Integer n);
LUA_API void (lua_rawsetp) (lua_State *L, int idx, const void *p);
LUA_API int (lua_setmetatable) (lua_State *L, int objindex);
LUA_API void (lua_setuservalue) (lua_State *L, int idx);
/*
** 'load' and 'call' functions (load and run Lua code)
*/
LUA_API void (lua_callk) (lua_State *L, int nargs, int nresults,
lua_KContext ctx, lua_KFunction k);
#define lua_call(L,n,r) lua_callk(L, (n), (r), 0, NULL)
LUA_API int (lua_pcallk) (lua_State *L, int nargs, int nresults, int errfunc,
lua_KContext ctx, lua_KFunction k);
#define lua_pcall(L,n,r,f) lua_pcallk(L, (n), (r), (f), 0, NULL)
LUA_API int (lua_load) (lua_State *L, lua_Reader reader, void *dt,
const char *chunkname, const char *mode);
LUA_API int (lua_dump) (lua_State *L, lua_Writer writer, void *data, int strip);
/*
** coroutine functions
*/
LUA_API int (lua_yieldk) (lua_State *L, int nresults, lua_KContext ctx,
lua_KFunction k);
LUA_API int (lua_resume) (lua_State *L, lua_State *from, int narg);
LUA_API int (lua_status) (lua_State *L);
LUA_API int (lua_isyieldable) (lua_State *L);
#define lua_yield(L,n) lua_yieldk(L, (n), 0, NULL)
/*
** garbage-collection function and options
*/
#define LUA_GCSTOP 0
#define LUA_GCRESTART 1
#define LUA_GCCOLLECT 2
#define LUA_GCCOUNT 3
#define LUA_GCCOUNTB 4
#define LUA_GCSTEP 5
#define LUA_GCSETPAUSE 6
#define LUA_GCSETSTEPMUL 7
#define LUA_GCISRUNNING 9
LUA_API int (lua_gc) (lua_State *L, int what, int data);
/*
** miscellaneous functions
*/
LUA_API int (lua_error) (lua_State *L);
LUA_API int (lua_next) (lua_State *L, int idx);
LUA_API void (lua_concat) (lua_State *L, int n);
LUA_API void (lua_len) (lua_State *L, int idx);
LUA_API size_t (lua_stringtonumber) (lua_State *L, const char *s);
LUA_API lua_Alloc (lua_getallocf) (lua_State *L, void **ud);
LUA_API void (lua_setallocf) (lua_State *L, lua_Alloc f, void *ud);
/*
** {==============================================================
** some useful macros
** ===============================================================
*/
#define lua_getextraspace(L) ((void *)((char *)(L) - LUA_EXTRASPACE))
#define lua_tonumber(L,i) lua_tonumberx(L,(i),NULL)
#define lua_tointeger(L,i) lua_tointegerx(L,(i),NULL)
#define lua_pop(L,n) lua_settop(L, -(n)-1)
#define lua_newtable(L) lua_createtable(L, 0, 0)
#define lua_register(L,n,f) (lua_pushcfunction(L, (f)), lua_setglobal(L, (n)))
#define lua_pushcfunction(L,f) lua_pushcclosure(L, (f), 0)
#define lua_isfunction(L,n) (lua_type(L, (n)) == LUA_TFUNCTION)
#define lua_istable(L,n) (lua_type(L, (n)) == LUA_TTABLE)
#define lua_islightuserdata(L,n) (lua_type(L, (n)) == LUA_TLIGHTUSERDATA)
#define lua_isnil(L,n) (lua_type(L, (n)) == LUA_TNIL)
#define lua_isboolean(L,n) (lua_type(L, (n)) == LUA_TBOOLEAN)
#define lua_isthread(L,n) (lua_type(L, (n)) == LUA_TTHREAD)
#define lua_isnone(L,n) (lua_type(L, (n)) == LUA_TNONE)
#define lua_isnoneornil(L, n) (lua_type(L, (n)) <= 0)
#define lua_pushliteral(L, s) \
lua_pushlstring(L, "" s, (sizeof(s)/sizeof(char))-1)
#define lua_pushglobaltable(L) \
lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_GLOBALS)
#define lua_tostring(L,i) lua_tolstring(L, (i), NULL)
#define lua_insert(L,idx) lua_rotate(L, (idx), 1)
#define lua_remove(L,idx) (lua_rotate(L, (idx), -1), lua_pop(L, 1))
#define lua_replace(L,idx) (lua_copy(L, -1, (idx)), lua_pop(L, 1))
/* }============================================================== */
/*
** {==============================================================
** compatibility macros for unsigned conversions
** ===============================================================
*/
#if defined(LUA_COMPAT_APIINTCASTS)
#define lua_pushunsigned(L,n) lua_pushinteger(L, (lua_Integer)(n))
#define lua_tounsignedx(L,i,is) ((lua_Unsigned)lua_tointegerx(L,i,is))
#define lua_tounsigned(L,i) lua_tounsignedx(L,(i),NULL)
#endif
/* }============================================================== */
/*
** {======================================================================
** Debug API
** =======================================================================
*/
/*
** Event codes
*/
#define LUA_HOOKCALL 0
#define LUA_HOOKRET 1
#define LUA_HOOKLINE 2
#define LUA_HOOKCOUNT 3
#define LUA_HOOKTAILCALL 4
/*
** Event masks
*/
#define LUA_MASKCALL (1 << LUA_HOOKCALL)
#define LUA_MASKRET (1 << LUA_HOOKRET)
#define LUA_MASKLINE (1 << LUA_HOOKLINE)
#define LUA_MASKCOUNT (1 << LUA_HOOKCOUNT)
typedef struct lua_Debug lua_Debug; /* activation record */
/* Functions to be called by the debugger in specific events */
typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
LUA_API int (lua_getstack) (lua_State *L, int level, lua_Debug *ar);
LUA_API int (lua_getinfo) (lua_State *L, const char *what, lua_Debug *ar);
LUA_API const char *(lua_getlocal) (lua_State *L, const lua_Debug *ar, int n);
LUA_API const char *(lua_setlocal) (lua_State *L, const lua_Debug *ar, int n);
LUA_API const char *(lua_getupvalue) (lua_State *L, int funcindex, int n);
LUA_API const char *(lua_setupvalue) (lua_State *L, int funcindex, int n);
LUA_API void *(lua_upvalueid) (lua_State *L, int fidx, int n);
LUA_API void (lua_upvaluejoin) (lua_State *L, int fidx1, int n1,
int fidx2, int n2);
LUA_API void (lua_sethook) (lua_State *L, lua_Hook func, int mask, int count);
LUA_API lua_Hook (lua_gethook) (lua_State *L);
LUA_API int (lua_gethookmask) (lua_State *L);
LUA_API int (lua_gethookcount) (lua_State *L);
struct lua_Debug {
int event;
const char *name; /* (n) */
const char *namewhat; /* (n) 'global', 'local', 'field', 'method' */
const char *what; /* (S) 'Lua', 'C', 'main', 'tail' */
const char *source; /* (S) */
int currentline; /* (l) */
int linedefined; /* (S) */
int lastlinedefined; /* (S) */
unsigned char nups; /* (u) number of upvalues */
unsigned char nparams;/* (u) number of parameters */
char isvararg; /* (u) */
char istailcall; /* (t) */
char short_src[LUA_IDSIZE]; /* (S) */
/* private part */
struct CallInfo *i_ci; /* active function */
};
/* }====================================================================== */
/******************************************************************************
* Copyright (C) 1994-2015 Lua.org, PUC-Rio.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
******************************************************************************/
#endif

View File

@ -1,735 +0,0 @@
/*
** $Id: luaconf.h,v 1.238 2014/12/29 13:27:55 roberto Exp $
** Configuration file for Lua
** See Copyright Notice in lua.h
*/
#ifndef luaconf_h
#define luaconf_h
#include <limits.h>
#include <stddef.h>
/*
** ===================================================================
** Search for "@@" to find all configurable definitions.
** ===================================================================
*/
/*
** {====================================================================
** System Configuration: macros to adapt (if needed) Lua to some
** particular platform, for instance compiling it with 32-bit numbers or
** restricting it to C89.
** =====================================================================
*/
/*
@@ LUA_32BITS enables Lua with 32-bit integers and 32-bit floats. You
** can also define LUA_32BITS in the make file, but changing here you
** ensure that all software connected to Lua will be compiled with the
** same configuration.
*/
/* #define LUA_32BITS */
/*
@@ LUA_USE_C89 controls the use of non-ISO-C89 features.
** Define it if you want Lua to avoid the use of a few C99 features
** or Windows-specific features on Windows.
*/
/* #define LUA_USE_C89 */
/*
** By default, Lua on Windows use (some) specific Windows features
*/
#if !defined(LUA_USE_C89) && defined(_WIN32) && !defined(_WIN32_WCE)
#define LUA_USE_WINDOWS /* enable goodies for regular Windows */
#endif
#if defined(LUA_USE_WINDOWS)
#define LUA_DL_DLL /* enable support for DLL */
#define LUA_USE_C89 /* broadly, Windows is C89 */
#endif
#if defined(LUA_USE_LINUX)
#define LUA_USE_POSIX
#define LUA_USE_DLOPEN /* needs an extra library: -ldl */
#define LUA_USE_READLINE /* needs some extra libraries */
#endif
#if defined(LUA_USE_MACOSX)
#define LUA_USE_POSIX
#define LUA_USE_DLOPEN /* MacOS does not need -ldl */
#define LUA_USE_READLINE /* needs an extra library: -lreadline */
#endif
/*
@@ LUA_C89_NUMBERS ensures that Lua uses the largest types available for
** C89 ('long' and 'double'); Windows always has '__int64', so it does
** not need to use this case.
*/
#if defined(LUA_USE_C89) && !defined(LUA_USE_WINDOWS)
#define LUA_C89_NUMBERS
#endif
/*
@@ LUAI_BITSINT defines the (minimum) number of bits in an 'int'.
*/
/* avoid undefined shifts */
#if ((INT_MAX >> 15) >> 15) >= 1
#define LUAI_BITSINT 32
#else
/* 'int' always must have at least 16 bits */
#define LUAI_BITSINT 16
#endif
/*
@@ LUA_INT_INT / LUA_INT_LONG / LUA_INT_LONGLONG defines the type for
** Lua integers.
@@ LUA_REAL_FLOAT / LUA_REAL_DOUBLE / LUA_REAL_LONGDOUBLE defines
** the type for Lua floats.
** Lua should work fine with any mix of these options (if supported
** by your C compiler). The usual configurations are 64-bit integers
** and 'double' (the default), 32-bit integers and 'float' (for
** restricted platforms), and 'long'/'double' (for C compilers not
** compliant with C99, which may not have support for 'long long').
*/
#if defined(LUA_32BITS) /* { */
/*
** 32-bit integers and 'float'
*/
#if LUAI_BITSINT >= 32 /* use 'int' if big enough */
#define LUA_INT_INT
#else /* otherwise use 'long' */
#define LUA_INT_LONG
#endif
#define LUA_REAL_FLOAT
#elif defined(LUA_C89_NUMBERS) /* }{ */
/*
** largest types available for C89 ('long' and 'double')
*/
#define LUA_INT_LONG
#define LUA_REAL_DOUBLE
#else /* }{ */
/*
** default configuration for 64-bit Lua ('long long' and 'double')
*/
#define LUA_INT_LONGLONG
#define LUA_REAL_DOUBLE
#endif /* } */
/* }================================================================== */
/*
** {==================================================================
** Configuration for Paths.
** ===================================================================
*/
/*
@@ LUA_PATH_DEFAULT is the default path that Lua uses to look for
** Lua libraries.
@@ LUA_CPATH_DEFAULT is the default path that Lua uses to look for
** C libraries.
** CHANGE them if your machine has a non-conventional directory
** hierarchy or if you want to install your libraries in
** non-conventional directories.
*/
#define LUA_VDIR LUA_VERSION_MAJOR "." LUA_VERSION_MINOR
#if defined(_WIN32) /* { */
/*
** In Windows, any exclamation mark ('!') in the path is replaced by the
** path of the directory of the executable file of the current process.
*/
#define LUA_LDIR "!\\lua\\"
#define LUA_CDIR "!\\"
#define LUA_SHRDIR "!\\..\\share\\lua\\" LUA_VDIR "\\"
#define LUA_PATH_DEFAULT \
LUA_LDIR"?.lua;" LUA_LDIR"?\\init.lua;" \
LUA_CDIR"?.lua;" LUA_CDIR"?\\init.lua;" \
LUA_SHRDIR"?.lua;" LUA_SHRDIR"?\\init.lua;" \
".\\?.lua;" ".\\?\\init.lua"
#define LUA_CPATH_DEFAULT \
LUA_CDIR"?.dll;" \
LUA_CDIR"..\\lib\\lua\\" LUA_VDIR "\\?.dll;" \
LUA_CDIR"loadall.dll;" ".\\?.dll"
#else /* }{ */
#define LUA_ROOT "/usr/local/"
#define LUA_LDIR LUA_ROOT "share/lua/" LUA_VDIR "/"
#define LUA_CDIR LUA_ROOT "lib/lua/" LUA_VDIR "/"
#define LUA_PATH_DEFAULT \
LUA_LDIR"?.lua;" LUA_LDIR"?/init.lua;" \
LUA_CDIR"?.lua;" LUA_CDIR"?/init.lua;" \
"./?.lua;" "./?/init.lua"
#define LUA_CPATH_DEFAULT \
LUA_CDIR"?.so;" LUA_CDIR"loadall.so;" "./?.so"
#endif /* } */
/*
@@ LUA_DIRSEP is the directory separator (for submodules).
** CHANGE it if your machine does not use "/" as the directory separator
** and is not Windows. (On Windows Lua automatically uses "\".)
*/
#if defined(_WIN32)
#define LUA_DIRSEP "\\"
#else
#define LUA_DIRSEP "/"
#endif
/* }================================================================== */
/*
** {==================================================================
** Marks for exported symbols in the C code
** ===================================================================
*/
/*
@@ LUA_API is a mark for all core API functions.
@@ LUALIB_API is a mark for all auxiliary library functions.
@@ LUAMOD_API is a mark for all standard library opening functions.
** CHANGE them if you need to define those functions in some special way.
** For instance, if you want to create one Windows DLL with the core and
** the libraries, you may want to use the following definition (define
** LUA_BUILD_AS_DLL to get it).
*/
#if defined(LUA_BUILD_AS_DLL) /* { */
#if defined(LUA_CORE) || defined(LUA_LIB) /* { */
#define LUA_API __declspec(dllexport)
#else /* }{ */
#define LUA_API __declspec(dllimport)
#endif /* } */
#else /* }{ */
#define LUA_API extern
#endif /* } */
/* more often than not the libs go together with the core */
#define LUALIB_API LUA_API
#define LUAMOD_API LUALIB_API
/*
@@ LUAI_FUNC is a mark for all extern functions that are not to be
** exported to outside modules.
@@ LUAI_DDEF and LUAI_DDEC are marks for all extern (const) variables
** that are not to be exported to outside modules (LUAI_DDEF for
** definitions and LUAI_DDEC for declarations).
** CHANGE them if you need to mark them in some special way. Elf/gcc
** (versions 3.2 and later) mark them as "hidden" to optimize access
** when Lua is compiled as a shared library. Not all elf targets support
** this attribute. Unfortunately, gcc does not offer a way to check
** whether the target offers that support, and those without support
** give a warning about it. To avoid these warnings, change to the
** default definition.
*/
#if defined(__GNUC__) && ((__GNUC__*100 + __GNUC_MINOR__) >= 302) && \
defined(__ELF__) /* { */
#define LUAI_FUNC __attribute__((visibility("hidden"))) extern
#else /* }{ */
#define LUAI_FUNC extern
#endif /* } */
#define LUAI_DDEC LUAI_FUNC
#define LUAI_DDEF /* empty */
/* }================================================================== */
/*
** {==================================================================
** Compatibility with previous versions
** ===================================================================
*/
/*
@@ LUA_COMPAT_5_2 controls other macros for compatibility with Lua 5.2.
@@ LUA_COMPAT_5_1 controls other macros for compatibility with Lua 5.1.
** You can define it to get all options, or change specific options
** to fit your specific needs.
*/
#if defined(LUA_COMPAT_5_2) /* { */
/*
@@ LUA_COMPAT_MATHLIB controls the presence of several deprecated
** functions in the mathematical library.
*/
#define LUA_COMPAT_MATHLIB
/*
@@ LUA_COMPAT_BITLIB controls the presence of library 'bit32'.
*/
#define LUA_COMPAT_BITLIB
/*
@@ LUA_COMPAT_IPAIRS controls the effectiveness of the __ipairs metamethod.
*/
#define LUA_COMPAT_IPAIRS
/*
@@ LUA_COMPAT_APIINTCASTS controls the presence of macros for
** manipulating other integer types (lua_pushunsigned, lua_tounsigned,
** luaL_checkint, luaL_checklong, etc.)
*/
#define LUA_COMPAT_APIINTCASTS
/*
@@ LUA_COMPAT_FLOATSTRING makes Lua format integral floats without a
@@ a float mark ('.0').
** This macro is not on by default even in compatibility mode,
** because this is not really an incompatibility.
*/
/* #define LUA_COMPAT_FLOATSTRING */
#endif /* } */
#if defined(LUA_COMPAT_5_1) /* { */
/*
@@ LUA_COMPAT_UNPACK controls the presence of global 'unpack'.
** You can replace it with 'table.unpack'.
*/
#define LUA_COMPAT_UNPACK
/*
@@ LUA_COMPAT_LOADERS controls the presence of table 'package.loaders'.
** You can replace it with 'package.searchers'.
*/
#define LUA_COMPAT_LOADERS
/*
@@ macro 'lua_cpcall' emulates deprecated function lua_cpcall.
** You can call your C function directly (with light C functions).
*/
#define lua_cpcall(L,f,u) \
(lua_pushcfunction(L, (f)), \
lua_pushlightuserdata(L,(u)), \
lua_pcall(L,1,0,0))
/*
@@ LUA_COMPAT_LOG10 defines the function 'log10' in the math library.
** You can rewrite 'log10(x)' as 'log(x, 10)'.
*/
#define LUA_COMPAT_LOG10
/*
@@ LUA_COMPAT_LOADSTRING defines the function 'loadstring' in the base
** library. You can rewrite 'loadstring(s)' as 'load(s)'.
*/
#define LUA_COMPAT_LOADSTRING
/*
@@ LUA_COMPAT_MAXN defines the function 'maxn' in the table library.
*/
#define LUA_COMPAT_MAXN
/*
@@ The following macros supply trivial compatibility for some
** changes in the API. The macros themselves document how to
** change your code to avoid using them.
*/
#define lua_strlen(L,i) lua_rawlen(L, (i))
#define lua_objlen(L,i) lua_rawlen(L, (i))
#define lua_equal(L,idx1,idx2) lua_compare(L,(idx1),(idx2),LUA_OPEQ)
#define lua_lessthan(L,idx1,idx2) lua_compare(L,(idx1),(idx2),LUA_OPLT)
/*
@@ LUA_COMPAT_MODULE controls compatibility with previous
** module functions 'module' (Lua) and 'luaL_register' (C).
*/
#define LUA_COMPAT_MODULE
#endif /* } */
/* }================================================================== */
/*
** {==================================================================
** Configuration for Numbers.
** Change these definitions if no predefined LUA_REAL_* / LUA_INT_*
** satisfy your needs.
** ===================================================================
*/
/*
@@ LUA_NUMBER is the floating-point type used by Lua.
**
@@ LUAI_UACNUMBER is the result of an 'usual argument conversion'
@@ over a floating number.
**
@@ LUA_NUMBER_FRMLEN is the length modifier for writing floats.
@@ LUA_NUMBER_FMT is the format for writing floats.
@@ lua_number2str converts a float to a string.
**
@@ l_mathop allows the addition of an 'l' or 'f' to all math operations.
**
@@ lua_str2number converts a decimal numeric string to a number.
*/
#if defined(LUA_REAL_FLOAT) /* { single float */
#define LUA_NUMBER float
#define LUAI_UACNUMBER double
#define LUA_NUMBER_FRMLEN ""
#define LUA_NUMBER_FMT "%.7g"
#define l_mathop(op) op##f
#define lua_str2number(s,p) strtof((s), (p))
#elif defined(LUA_REAL_LONGDOUBLE) /* }{ long double */
#define LUA_NUMBER long double
#define LUAI_UACNUMBER long double
#define LUA_NUMBER_FRMLEN "L"
#define LUA_NUMBER_FMT "%.19Lg"
#define l_mathop(op) op##l
#define lua_str2number(s,p) strtold((s), (p))
#elif defined(LUA_REAL_DOUBLE) /* }{ double */
#define LUA_NUMBER double
#define LUAI_UACNUMBER double
#define LUA_NUMBER_FRMLEN ""
#define LUA_NUMBER_FMT "%.14g"
#define l_mathop(op) op
#define lua_str2number(s,p) strtod((s), (p))
#else /* }{ */
#error "numeric real type not defined"
#endif /* } */
#define l_floor(x) (l_mathop(floor)(x))
#define lua_number2str(s,n) sprintf((s), LUA_NUMBER_FMT, (n))
/*
@@ lua_numbertointeger converts a float number to an integer, or
** returns 0 if float is not within the range of a lua_Integer.
** (The range comparisons are tricky because of rounding. The tests
** here assume a two-complement representation, where MININTEGER always
** has an exact representation as a float; MAXINTEGER may not have one,
** and therefore its conversion to float may have an ill-defined value.)
*/
#define lua_numbertointeger(n,p) \
((n) >= (LUA_NUMBER)(LUA_MININTEGER) && \
(n) < -(LUA_NUMBER)(LUA_MININTEGER) && \
(*(p) = (LUA_INTEGER)(n), 1))
/*
@@ The luai_num* macros define the primitive operations over numbers.
** They should work for any size of floating numbers.
*/
/* the following operations need the math library */
#if defined(lobject_c) || defined(lvm_c)
#include <math.h>
/* floor division (defined as 'floor(a/b)') */
#define luai_numidiv(L,a,b) ((void)L, l_mathop(floor)(luai_numdiv(L,a,b)))
/*
** module: defined as 'a - floor(a/b)*b'; the previous definition gives
** NaN when 'b' is huge, but the result should be 'a'. 'fmod' gives the
** result of 'a - trunc(a/b)*b', and therefore must be corrected when
** 'trunc(a/b) ~= floor(a/b)'. That happens when the division has a
** non-integer negative result, which is equivalent to the test below
*/
#define luai_nummod(L,a,b,m) \
{ (m) = l_mathop(fmod)(a,b); if ((m)*(b) < 0) (m) += (b); }
/* exponentiation */
#define luai_numpow(L,a,b) ((void)L, l_mathop(pow)(a,b))
#endif
/* these are quite standard operations */
#if defined(LUA_CORE)
#define luai_numadd(L,a,b) ((a)+(b))
#define luai_numsub(L,a,b) ((a)-(b))
#define luai_nummul(L,a,b) ((a)*(b))
#define luai_numdiv(L,a,b) ((a)/(b))
#define luai_numunm(L,a) (-(a))
#define luai_numeq(a,b) ((a)==(b))
#define luai_numlt(a,b) ((a)<(b))
#define luai_numle(a,b) ((a)<=(b))
#define luai_numisnan(a) (!luai_numeq((a), (a)))
#endif
/*
@@ LUA_INTEGER is the integer type used by Lua.
**
@@ LUA_UNSIGNED is the unsigned version of LUA_INTEGER.
**
@@ LUAI_UACINT is the result of an 'usual argument conversion'
@@ over a lUA_INTEGER.
@@ LUA_INTEGER_FRMLEN is the length modifier for reading/writing integers.
@@ LUA_INTEGER_FMT is the format for writing integers.
@@ LUA_MAXINTEGER is the maximum value for a LUA_INTEGER.
@@ LUA_MININTEGER is the minimum value for a LUA_INTEGER.
@@ lua_integer2str converts an integer to a string.
*/
/* The following definitions are good for most cases here */
#define LUA_INTEGER_FMT "%" LUA_INTEGER_FRMLEN "d"
#define lua_integer2str(s,n) sprintf((s), LUA_INTEGER_FMT, (n))
#define LUAI_UACINT LUA_INTEGER
/*
** use LUAI_UACINT here to avoid problems with promotions (which
** can turn a comparison between unsigneds into a signed comparison)
*/
#define LUA_UNSIGNED unsigned LUAI_UACINT
/* now the variable definitions */
#if defined(LUA_INT_INT) /* { int */
#define LUA_INTEGER int
#define LUA_INTEGER_FRMLEN ""
#define LUA_MAXINTEGER INT_MAX
#define LUA_MININTEGER INT_MIN
#elif defined(LUA_INT_LONG) /* }{ long */
#define LUA_INTEGER long
#define LUA_INTEGER_FRMLEN "l"
#define LUA_MAXINTEGER LONG_MAX
#define LUA_MININTEGER LONG_MIN
#elif defined(LUA_INT_LONGLONG) /* }{ long long */
#if defined(LLONG_MAX) /* { */
/* use ISO C99 stuff */
#define LUA_INTEGER long long
#define LUA_INTEGER_FRMLEN "ll"
#define LUA_MAXINTEGER LLONG_MAX
#define LUA_MININTEGER LLONG_MIN
#elif defined(LUA_USE_WINDOWS) /* }{ */
/* in Windows, can use specific Windows types */
#define LUA_INTEGER __int64
#define LUA_INTEGER_FRMLEN "I64"
#define LUA_MAXINTEGER _I64_MAX
#define LUA_MININTEGER _I64_MIN
#else /* }{ */
#error "Compiler does not support 'long long'. Use option '-DLUA_32BITS' \
or '-DLUA_C89_NUMBERS' (see file 'luaconf.h' for details)"
#endif /* } */
#else /* }{ */
#error "numeric integer type not defined"
#endif /* } */
/* }================================================================== */
/*
** {==================================================================
** Dependencies with C99
** ===================================================================
*/
/*
@@ lua_strx2number converts an hexadecimal numeric string to a number.
** In C99, 'strtod' does both conversions. Otherwise, you can
** leave 'lua_strx2number' undefined and Lua will provide its own
** implementation.
*/
#if !defined(LUA_USE_C89)
#define lua_strx2number(s,p) lua_str2number(s,p)
#endif
/*
@@ LUA_USE_AFORMAT allows '%a'/'%A' specifiers in 'string.format'
** Enable it if the C function 'printf' supports these specifiers.
** (C99 demands it and Windows also supports it.)
*/
#if !defined(LUA_USE_C89) || defined(LUA_USE_WINDOWS)
#define LUA_USE_AFORMAT
#endif
/*
** 'strtof' and 'opf' variants for math functions are not valid in
** C89. Otherwise, the macro 'HUGE_VALF' is a good proxy for testing the
** availability of these variants. ('math.h' is already included in
** all files that use these macros.)
*/
#if defined(LUA_USE_C89) || (defined(HUGE_VAL) && !defined(HUGE_VALF))
#undef l_mathop /* variants not available */
#undef lua_str2number
#define l_mathop(op) (lua_Number)op /* no variant */
#define lua_str2number(s,p) ((lua_Number)strtod((s), (p)))
#endif
/*
@@ LUA_KCONTEXT is the type of the context ('ctx') for continuation
** functions. It must be a numerical type; Lua will use 'intptr_t' if
** available, otherwise it will use 'ptrdiff_t' (the nearest thing to
** 'intptr_t' in C89)
*/
#define LUA_KCONTEXT ptrdiff_t
#if !defined(LUA_USE_C89) && defined(__STDC_VERSION__) && \
__STDC_VERSION__ >= 199901L
#include <stdint.h>
#if defined (INTPTR_MAX) /* even in C99 this type is optional */
#undef LUA_KCONTEXT
#define LUA_KCONTEXT intptr_t
#endif
#endif
/* }================================================================== */
/*
** {==================================================================
** Macros that affect the API and must be stable (that is, must be the
** same when you compile Lua and when you compile code that links to
** Lua). You probably do not want/need to change them.
** =====================================================================
*/
/*
@@ LUAI_MAXSTACK limits the size of the Lua stack.
** CHANGE it if you need a different limit. This limit is arbitrary;
** its only purpose is to stop Lua from consuming unlimited stack
** space (and to reserve some numbers for pseudo-indices).
*/
#if LUAI_BITSINT >= 32
#define LUAI_MAXSTACK 1000000
#else
#define LUAI_MAXSTACK 15000
#endif
/* reserve some space for error handling */
#define LUAI_FIRSTPSEUDOIDX (-LUAI_MAXSTACK - 1000)
/*
@@ LUA_EXTRASPACE defines the size of a raw memory area associated with
** a Lua state with very fast access.
** CHANGE it if you need a different size.
*/
#define LUA_EXTRASPACE (sizeof(void *))
/*
@@ LUA_IDSIZE gives the maximum size for the description of the source
@@ of a function in debug information.
** CHANGE it if you want a different size.
*/
#define LUA_IDSIZE 60
/*
@@ LUAI_MAXSHORTLEN is the maximum length for short strings, that is,
** strings that are internalized. (Cannot be smaller than reserved words
** or tags for metamethods, as these strings must be internalized;
** #("function") = 8, #("__newindex") = 10.)
*/
#define LUAI_MAXSHORTLEN 40
/*
@@ LUAL_BUFFERSIZE is the buffer size used by the lauxlib buffer system.
** CHANGE it if it uses too much C-stack space.
*/
#define LUAL_BUFFERSIZE ((int)(0x80 * sizeof(void*) * sizeof(lua_Integer)))
/* }================================================================== */
/*
@@ LUA_QL describes how error messages quote program elements.
** Lua does not use these macros anymore; they are here for
** compatibility only.
*/
#define LUA_QL(x) "'" x "'"
#define LUA_QS LUA_QL("%s")
/* =================================================================== */
/*
** Local configuration. You can use this space to add your redefinitions
** without modifying the main part of the file.
*/
#endif

View File

@ -1,58 +0,0 @@
/*
** $Id: lualib.h,v 1.44 2014/02/06 17:32:33 roberto Exp $
** Lua standard libraries
** See Copyright Notice in lua.h
*/
#ifndef lualib_h
#define lualib_h
#include "lua.h"
LUAMOD_API int (luaopen_base) (lua_State *L);
#define LUA_COLIBNAME "coroutine"
LUAMOD_API int (luaopen_coroutine) (lua_State *L);
#define LUA_TABLIBNAME "table"
LUAMOD_API int (luaopen_table) (lua_State *L);
#define LUA_IOLIBNAME "io"
LUAMOD_API int (luaopen_io) (lua_State *L);
#define LUA_OSLIBNAME "os"
LUAMOD_API int (luaopen_os) (lua_State *L);
#define LUA_STRLIBNAME "string"
LUAMOD_API int (luaopen_string) (lua_State *L);
#define LUA_UTF8LIBNAME "utf8"
LUAMOD_API int (luaopen_utf8) (lua_State *L);
#define LUA_BITLIBNAME "bit32"
LUAMOD_API int (luaopen_bit32) (lua_State *L);
#define LUA_MATHLIBNAME "math"
LUAMOD_API int (luaopen_math) (lua_State *L);
#define LUA_DBLIBNAME "debug"
LUAMOD_API int (luaopen_debug) (lua_State *L);
#define LUA_LOADLIBNAME "package"
LUAMOD_API int (luaopen_package) (lua_State *L);
/* open all previous libraries */
LUALIB_API void (luaL_openlibs) (lua_State *L);
#if !defined(lua_assert)
#define lua_assert(x) ((void)0)
#endif
#endif

View File

@ -1,356 +0,0 @@
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2001 by Andrei Alexandrescu
// This code accompanies the book:
// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design
// Patterns Applied". Copyright (c) 2001. Addison-Wesley.
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author or Addison-Wesley Longman make no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
// Updated 2019 by Matthieu Dartiailh for C++11 compliancy
////////////////////////////////////////////////////////////////////////////////
#pragma once
// $Id: AssocVector.h 765 2006-10-18 13:55:32Z syntheticpp $
#include <algorithm>
#include <functional>
#include <vector>
#include <utility>
namespace Loki
{
////////////////////////////////////////////////////////////////////////////////
// class template AssocVectorCompare
// Used by AssocVector
////////////////////////////////////////////////////////////////////////////////
namespace Private
{
template <class Value, class C>
class AssocVectorCompare : public C
{
typedef std::pair<typename C::first_argument_type, Value>
Data;
typedef typename C::first_argument_type first_argument_type;
public:
AssocVectorCompare()
{}
AssocVectorCompare(const C& src) : C(src)
{}
bool operator()(const first_argument_type& lhs,
const first_argument_type& rhs) const
{ return C::operator()(lhs, rhs); }
bool operator()(const Data& lhs, const Data& rhs) const
{ return operator()(lhs.first, rhs.first); }
bool operator()(const Data& lhs,
const first_argument_type& rhs) const
{ return operator()(lhs.first, rhs); }
bool operator()(const first_argument_type& lhs,
const Data& rhs) const
{ return operator()(lhs, rhs.first); }
};
}
////////////////////////////////////////////////////////////////////////////////
// class template AssocVector
// An associative vector built as a syntactic drop-in replacement for std::map
// BEWARE: AssocVector doesn't respect all map's guarantees, the most important
// being:
// * iterators are invalidated by insert and erase operations
// * the complexity of insert/erase is O(N) not O(log N)
// * value_type is std::pair<K, V> not std::pair<const K, V>
// * iterators are random
////////////////////////////////////////////////////////////////////////////////
template
<
class K,
class V,
class C = std::less<K>,
class A = std::allocator< std::pair<K, V> >
>
class AssocVector
: private std::vector< std::pair<K, V>, A >
, private Private::AssocVectorCompare<V, C>
{
typedef std::vector<std::pair<K, V>, A> Base;
typedef Private::AssocVectorCompare<V, C> MyCompare;
public:
typedef K key_type;
typedef V mapped_type;
typedef typename Base::value_type value_type;
typedef C key_compare;
typedef A allocator_type;
typedef typename A::reference reference;
typedef typename A::const_reference const_reference;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
typedef typename Base::size_type size_type;
typedef typename Base::difference_type difference_type;
typedef typename A::pointer pointer;
typedef typename A::const_pointer const_pointer;
typedef typename Base::reverse_iterator reverse_iterator;
typedef typename Base::const_reverse_iterator const_reverse_iterator;
class value_compare
: public std::function<bool(value_type, value_type)>
, private key_compare
{
friend class AssocVector;
protected:
value_compare(key_compare pred) : key_compare(pred)
{}
public:
bool operator()(const value_type& lhs, const value_type& rhs) const
{ return key_compare::operator()(lhs.first, rhs.first); }
};
// 23.3.1.1 construct/copy/destroy
explicit AssocVector(const key_compare& comp = key_compare(),
const A& alloc = A())
: Base(alloc), MyCompare(comp)
{}
template <class InputIterator>
AssocVector(InputIterator first, InputIterator last,
const key_compare& comp = key_compare(),
const A& alloc = A())
: Base(first, last, alloc), MyCompare(comp)
{
MyCompare& me = *this;
std::sort(begin(), end(), me);
}
AssocVector& operator=(const AssocVector& rhs)
{
AssocVector(rhs).swap(*this);
return *this;
}
// iterators:
// The following are here because MWCW gets 'using' wrong
iterator begin() { return Base::begin(); }
const_iterator begin() const { return Base::begin(); }
iterator end() { return Base::end(); }
const_iterator end() const { return Base::end(); }
reverse_iterator rbegin() { return Base::rbegin(); }
const_reverse_iterator rbegin() const { return Base::rbegin(); }
reverse_iterator rend() { return Base::rend(); }
const_reverse_iterator rend() const { return Base::rend(); }
// capacity:
bool empty() const { return Base::empty(); }
size_type size() const { return Base::size(); }
size_type max_size() { return Base::max_size(); }
// 23.3.1.2 element access:
mapped_type& operator[](const key_type& key)
{ return insert(value_type(key, mapped_type())).first->second; }
// modifiers:
std::pair<iterator, bool> insert(const value_type& val)
{
bool found(true);
iterator i(lower_bound(val.first));
if (i == end() || this->operator()(val.first, i->first))
{
i = Base::insert(i, val);
found = false;
}
return std::make_pair(i, !found);
}
//Section [23.1.2], Table 69
//http://developer.apple.com/documentation/DeveloperTools/gcc-3.3/libstdc++/23_containers/howto.html#4
iterator insert(iterator pos, const value_type& val)
{
if( (pos == begin() || this->operator()(*(pos-1),val)) &&
(pos == end() || this->operator()(val, *pos)) )
{
return Base::insert(pos, val);
}
return insert(val).first;
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ for (; first != last; ++first) insert(*first); }
void erase(iterator pos)
{ Base::erase(pos); }
size_type erase(const key_type& k)
{
iterator i(find(k));
if (i == end()) return 0;
erase(i);
return 1;
}
void erase(iterator first, iterator last)
{ Base::erase(first, last); }
void swap(AssocVector& other)
{
Base::swap(other);
MyCompare& me = *this;
MyCompare& rhs = other;
std::swap(me, rhs);
}
void clear()
{ Base::clear(); }
// observers:
key_compare key_comp() const
{ return *this; }
value_compare value_comp() const
{
const key_compare& comp = *this;
return value_compare(comp);
}
// 23.3.1.3 map operations:
iterator find(const key_type& k)
{
iterator i(lower_bound(k));
if (i != end() && this->operator()(k, i->first))
{
i = end();
}
return i;
}
const_iterator find(const key_type& k) const
{
const_iterator i(lower_bound(k));
if (i != end() && this->operator()(k, i->first))
{
i = end();
}
return i;
}
size_type count(const key_type& k) const
{ return find(k) != end(); }
iterator lower_bound(const key_type& k)
{
MyCompare& me = *this;
return std::lower_bound(begin(), end(), k, me);
}
const_iterator lower_bound(const key_type& k) const
{
const MyCompare& me = *this;
return std::lower_bound(begin(), end(), k, me);
}
iterator upper_bound(const key_type& k)
{
MyCompare& me = *this;
return std::upper_bound(begin(), end(), k, me);
}
const_iterator upper_bound(const key_type& k) const
{
const MyCompare& me = *this;
return std::upper_bound(begin(), end(), k, me);
}
std::pair<iterator, iterator> equal_range(const key_type& k)
{
MyCompare& me = *this;
return std::equal_range(begin(), end(), k, me);
}
std::pair<const_iterator, const_iterator> equal_range(
const key_type& k) const
{
const MyCompare& me = *this;
return std::equal_range(begin(), end(), k, me);
}
template <class K1, class V1, class C1, class A1>
friend bool operator==(const AssocVector<K1, V1, C1, A1>& lhs,
const AssocVector<K1, V1, C1, A1>& rhs);
bool operator<(const AssocVector& rhs) const
{
const Base& me = *this;
const Base& yo = rhs;
return me < yo;
}
template <class K1, class V1, class C1, class A1>
friend bool operator!=(const AssocVector<K1, V1, C1, A1>& lhs,
const AssocVector<K1, V1, C1, A1>& rhs);
template <class K1, class V1, class C1, class A1>
friend bool operator>(const AssocVector<K1, V1, C1, A1>& lhs,
const AssocVector<K1, V1, C1, A1>& rhs);
template <class K1, class V1, class C1, class A1>
friend bool operator>=(const AssocVector<K1, V1, C1, A1>& lhs,
const AssocVector<K1, V1, C1, A1>& rhs);
template <class K1, class V1, class C1, class A1>
friend bool operator<=(const AssocVector<K1, V1, C1, A1>& lhs,
const AssocVector<K1, V1, C1, A1>& rhs);
};
template <class K, class V, class C, class A>
inline bool operator==(const AssocVector<K, V, C, A>& lhs,
const AssocVector<K, V, C, A>& rhs)
{
const std::vector<std::pair<K, V>, A>& me = lhs;
return me == rhs;
}
template <class K, class V, class C, class A>
inline bool operator!=(const AssocVector<K, V, C, A>& lhs,
const AssocVector<K, V, C, A>& rhs)
{ return !(lhs == rhs); }
template <class K, class V, class C, class A>
inline bool operator>(const AssocVector<K, V, C, A>& lhs,
const AssocVector<K, V, C, A>& rhs)
{ return rhs < lhs; }
template <class K, class V, class C, class A>
inline bool operator>=(const AssocVector<K, V, C, A>& lhs,
const AssocVector<K, V, C, A>& rhs)
{ return !(lhs < rhs); }
template <class K, class V, class C, class A>
inline bool operator<=(const AssocVector<K, V, C, A>& lhs,
const AssocVector<K, V, C, A>& rhs)
{ return !(rhs < lhs); }
// specialized algorithms:
template <class K, class V, class C, class A>
void swap(AssocVector<K, V, C, A>& lhs, AssocVector<K, V, C, A>& rhs)
{ lhs.swap(rhs); }
} // namespace Loki

View File

@ -1,119 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <map>
#include <vector>
#include "expression.h"
#include "shareddata.h"
#include "strength.h"
#include "term.h"
#include "variable.h"
namespace kiwi
{
enum RelationalOperator
{
OP_LE,
OP_GE,
OP_EQ
};
class Constraint
{
public:
Constraint() : m_data(0) {}
Constraint(const Expression &expr,
RelationalOperator op,
double strength = strength::required) : m_data(new ConstraintData(expr, op, strength)) {}
Constraint(const Constraint &other, double strength) : m_data(new ConstraintData(other, strength)) {}
~Constraint() {}
const Expression &expression() const
{
return m_data->m_expression;
}
RelationalOperator op() const
{
return m_data->m_op;
}
double strength() const
{
return m_data->m_strength;
}
bool operator!() const
{
return !m_data;
}
private:
static Expression reduce(const Expression &expr)
{
std::map<Variable, double> vars;
typedef std::vector<Term>::const_iterator iter_t;
iter_t end = expr.terms().end();
for (iter_t it = expr.terms().begin(); it != end; ++it)
vars[it->variable()] += it->coefficient();
std::vector<Term> terms(vars.begin(), vars.end());
return Expression(terms, expr.constant());
}
class ConstraintData : public SharedData
{
public:
ConstraintData(const Expression &expr,
RelationalOperator op,
double strength) : SharedData(),
m_expression(reduce(expr)),
m_strength(strength::clip(strength)),
m_op(op) {}
ConstraintData(const Constraint &other, double strength) : SharedData(),
m_expression(other.expression()),
m_strength(strength::clip(strength)),
m_op(other.op()) {}
~ConstraintData() {}
Expression m_expression;
double m_strength;
RelationalOperator m_op;
private:
ConstraintData(const ConstraintData &other);
ConstraintData &operator=(const ConstraintData &other);
};
SharedDataPtr<ConstraintData> m_data;
friend bool operator<(const Constraint &lhs, const Constraint &rhs)
{
return lhs.m_data < rhs.m_data;
}
friend bool operator==(const Constraint &lhs, const Constraint &rhs)
{
return lhs.m_data == rhs.m_data;
}
friend bool operator!=(const Constraint &lhs, const Constraint &rhs)
{
return lhs.m_data != rhs.m_data;
}
};
} // namespace kiwi

View File

@ -1,200 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include "constraint.h"
#include "solverimpl.h"
#include "term.h"
namespace kiwi
{
namespace impl
{
class DebugHelper
{
public:
static void dump(const SolverImpl &solver, std::ostream &out)
{
out << "Objective" << std::endl;
out << "---------" << std::endl;
dump(*solver.m_objective, out);
out << std::endl;
out << "Tableau" << std::endl;
out << "-------" << std::endl;
dump(solver.m_rows, out);
out << std::endl;
out << "Infeasible" << std::endl;
out << "----------" << std::endl;
dump(solver.m_infeasible_rows, out);
out << std::endl;
out << "Variables" << std::endl;
out << "---------" << std::endl;
dump(solver.m_vars, out);
out << std::endl;
out << "Edit Variables" << std::endl;
out << "--------------" << std::endl;
dump(solver.m_edits, out);
out << std::endl;
out << "Constraints" << std::endl;
out << "-----------" << std::endl;
dump(solver.m_cns, out);
out << std::endl;
out << std::endl;
}
static void dump(const SolverImpl::RowMap &rows, std::ostream &out)
{
typedef SolverImpl::RowMap::const_iterator iter_t;
iter_t end = rows.end();
for (iter_t it = rows.begin(); it != end; ++it)
{
dump(it->first, out);
out << " | ";
dump(*it->second, out);
}
}
static void dump(const std::vector<Symbol> &symbols, std::ostream &out)
{
typedef std::vector<Symbol>::const_iterator iter_t;
iter_t end = symbols.end();
for (iter_t it = symbols.begin(); it != end; ++it)
{
dump(*it, out);
out << std::endl;
}
}
static void dump(const SolverImpl::VarMap &vars, std::ostream &out)
{
typedef SolverImpl::VarMap::const_iterator iter_t;
iter_t end = vars.end();
for (iter_t it = vars.begin(); it != end; ++it)
{
out << it->first.name() << " = ";
dump(it->second, out);
out << std::endl;
}
}
static void dump(const SolverImpl::CnMap &cns, std::ostream &out)
{
typedef SolverImpl::CnMap::const_iterator iter_t;
iter_t end = cns.end();
for (iter_t it = cns.begin(); it != end; ++it)
dump(it->first, out);
}
static void dump(const SolverImpl::EditMap &edits, std::ostream &out)
{
typedef SolverImpl::EditMap::const_iterator iter_t;
iter_t end = edits.end();
for (iter_t it = edits.begin(); it != end; ++it)
out << it->first.name() << std::endl;
}
static void dump(const Row &row, std::ostream &out)
{
typedef Row::CellMap::const_iterator iter_t;
out << row.constant();
iter_t end = row.cells().end();
for (iter_t it = row.cells().begin(); it != end; ++it)
{
out << " + " << it->second << " * ";
dump(it->first, out);
}
out << std::endl;
}
static void dump(const Symbol &symbol, std::ostream &out)
{
switch (symbol.type())
{
case Symbol::Invalid:
out << "i";
break;
case Symbol::External:
out << "v";
break;
case Symbol::Slack:
out << "s";
break;
case Symbol::Error:
out << "e";
break;
case Symbol::Dummy:
out << "d";
break;
default:
break;
}
out << symbol.id();
}
static void dump(const Constraint &cn, std::ostream &out)
{
typedef std::vector<Term>::const_iterator iter_t;
iter_t begin = cn.expression().terms().begin();
iter_t end = cn.expression().terms().end();
for (iter_t it = begin; it != end; ++it)
{
out << it->coefficient() << " * ";
out << it->variable().name() << " + ";
}
out << cn.expression().constant();
switch (cn.op())
{
case OP_LE:
out << " <= 0 ";
break;
case OP_GE:
out << " >= 0 ";
break;
case OP_EQ:
out << " == 0 ";
break;
default:
break;
}
out << " | strength = " << cn.strength() << std::endl;
}
};
} // namespace impl
namespace debug
{
template <typename T>
void dump(const T &value)
{
impl::DebugHelper::dump(value, std::cout);
}
template <typename T>
void dump(const T &value, std::ostream &out)
{
impl::DebugHelper::dump(value, out);
}
template <typename T>
std::string dumps(const T &value)
{
std::stringstream stream;
impl::DebugHelper::dump(value, stream);
return stream.str();
}
} // namespace debug
} // namespace kiwi

View File

@ -1,162 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <exception>
#include <string>
#include "constraint.h"
#include "variable.h"
namespace kiwi
{
class UnsatisfiableConstraint : public std::exception
{
public:
UnsatisfiableConstraint(const Constraint &constraint) : m_constraint(constraint) {}
~UnsatisfiableConstraint() throw() {}
const char *what() const throw()
{
return "The constraint can not be satisfied.";
}
const Constraint &constraint() const
{
return m_constraint;
}
private:
Constraint m_constraint;
};
class UnknownConstraint : public std::exception
{
public:
UnknownConstraint(const Constraint &constraint) : m_constraint(constraint) {}
~UnknownConstraint() throw() {}
const char *what() const throw()
{
return "The constraint has not been added to the solver.";
}
const Constraint &constraint() const
{
return m_constraint;
}
private:
Constraint m_constraint;
};
class DuplicateConstraint : public std::exception
{
public:
DuplicateConstraint(const Constraint &constraint) : m_constraint(constraint) {}
~DuplicateConstraint() throw() {}
const char *what() const throw()
{
return "The constraint has already been added to the solver.";
}
const Constraint &constraint() const
{
return m_constraint;
}
private:
Constraint m_constraint;
};
class UnknownEditVariable : public std::exception
{
public:
UnknownEditVariable(const Variable &variable) : m_variable(variable) {}
~UnknownEditVariable() throw() {}
const char *what() const throw()
{
return "The edit variable has not been added to the solver.";
}
const Variable &variable() const
{
return m_variable;
}
private:
Variable m_variable;
};
class DuplicateEditVariable : public std::exception
{
public:
DuplicateEditVariable(const Variable &variable) : m_variable(variable) {}
~DuplicateEditVariable() throw() {}
const char *what() const throw()
{
return "The edit variable has already been added to the solver.";
}
const Variable &variable() const
{
return m_variable;
}
private:
Variable m_variable;
};
class BadRequiredStrength : public std::exception
{
public:
BadRequiredStrength() {}
~BadRequiredStrength() throw() {}
const char *what() const throw()
{
return "A required strength cannot be used in this context.";
}
};
class InternalSolverError : public std::exception
{
public:
InternalSolverError() : m_msg("An internal solver error ocurred.") {}
InternalSolverError(const char *msg) : m_msg(msg) {}
InternalSolverError(const std::string &msg) : m_msg(msg) {}
~InternalSolverError() throw() {}
const char *what() const throw()
{
return m_msg.c_str();
}
private:
std::string m_msg;
};
} // namespace kiwi

View File

@ -1,52 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <vector>
#include "term.h"
namespace kiwi
{
class Expression
{
public:
Expression(double constant = 0.0) : m_constant(constant) {}
Expression(const Term &term, double constant = 0.0) : m_terms(1, term), m_constant(constant) {}
Expression(const std::vector<Term> &terms, double constant = 0.0) : m_terms(terms), m_constant(constant) {}
~Expression() {}
const std::vector<Term> &terms() const
{
return m_terms;
}
double constant() const
{
return m_constant;
}
double value() const
{
typedef std::vector<Term>::const_iterator iter_t;
double result = m_constant;
iter_t end = m_terms.end();
for (iter_t it = m_terms.begin(); it != end; ++it)
result += it->value();
return result;
}
private:
std::vector<Term> m_terms;
double m_constant;
};
} // namespace kiwi

View File

@ -1,19 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include "constraint.h"
#include "debug.h"
#include "errors.h"
#include "expression.h"
#include "shareddata.h"
#include "solver.h"
#include "strength.h"
#include "symbolics.h"
#include "term.h"
#include "variable.h"
#include "version.h"

View File

@ -1,37 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2019, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <functional>
#include <map>
#include <memory>
#include <utility>
#include "AssocVector.h"
namespace kiwi
{
namespace impl
{
template <
typename K,
typename V,
typename C = std::less<K>,
typename A = std::allocator<std::pair<K, V>>>
using MapType = Loki::AssocVector<K, V, C, A>;
// template<
// typename K,
// typename V,
// typename C = std::less<K>,
// typename A = std::allocator< std::pair<const K, V> > >
// using MapType = std::map<K, V, C, A>;
} // namespace impl
} // namespace kiwi

View File

@ -1,188 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include "maptype.h"
#include "symbol.h"
#include "util.h"
namespace kiwi
{
namespace impl
{
class Row
{
public:
typedef MapType<Symbol, double> CellMap;
Row() : m_constant(0.0) {}
Row(double constant) : m_constant(constant) {}
Row(const Row &other) : m_cells(other.m_cells), m_constant(other.m_constant) {}
~Row() {}
const CellMap &cells() const
{
return m_cells;
}
double constant() const
{
return m_constant;
}
/* Add a constant value to the row constant.
The new value of the constant is returned.
*/
double add(double value)
{
return m_constant += value;
}
/* Insert a symbol into the row with a given coefficient.
If the symbol already exists in the row, the coefficient will be
added to the existing coefficient. If the resulting coefficient
is zero, the symbol will be removed from the row.
*/
void insert(const Symbol &symbol, double coefficient = 1.0)
{
if (nearZero(m_cells[symbol] += coefficient))
m_cells.erase(symbol);
}
/* Insert a row into this row with a given coefficient.
The constant and the cells of the other row will be multiplied by
the coefficient and added to this row. Any cell with a resulting
coefficient of zero will be removed from the row.
*/
void insert(const Row &other, double coefficient = 1.0)
{
typedef CellMap::const_iterator iter_t;
m_constant += other.m_constant * coefficient;
iter_t end = other.m_cells.end();
for (iter_t it = other.m_cells.begin(); it != end; ++it)
{
double coeff = it->second * coefficient;
if (nearZero(m_cells[it->first] += coeff))
m_cells.erase(it->first);
}
}
/* Remove the given symbol from the row.
*/
void remove(const Symbol &symbol)
{
CellMap::iterator it = m_cells.find(symbol);
if (it != m_cells.end())
m_cells.erase(it);
}
/* Reverse the sign of the constant and all cells in the row.
*/
void reverseSign()
{
typedef CellMap::iterator iter_t;
m_constant = -m_constant;
iter_t end = m_cells.end();
for (iter_t it = m_cells.begin(); it != end; ++it)
it->second = -it->second;
}
/* Solve the row for the given symbol.
This method assumes the row is of the form a * x + b * y + c = 0
and (assuming solve for x) will modify the row to represent the
right hand side of x = -b/a * y - c / a. The target symbol will
be removed from the row, and the constant and other cells will
be multiplied by the negative inverse of the target coefficient.
The given symbol *must* exist in the row.
*/
void solveFor(const Symbol &symbol)
{
typedef CellMap::iterator iter_t;
double coeff = -1.0 / m_cells[symbol];
m_cells.erase(symbol);
m_constant *= coeff;
iter_t end = m_cells.end();
for (iter_t it = m_cells.begin(); it != end; ++it)
it->second *= coeff;
}
/* Solve the row for the given symbols.
This method assumes the row is of the form x = b * y + c and will
solve the row such that y = x / b - c / b. The rhs symbol will be
removed from the row, the lhs added, and the result divided by the
negative inverse of the rhs coefficient.
The lhs symbol *must not* exist in the row, and the rhs symbol
*must* exist in the row.
*/
void solveFor(const Symbol &lhs, const Symbol &rhs)
{
insert(lhs, -1.0);
solveFor(rhs);
}
/* Get the coefficient for the given symbol.
If the symbol does not exist in the row, zero will be returned.
*/
double coefficientFor(const Symbol &symbol) const
{
CellMap::const_iterator it = m_cells.find(symbol);
if (it == m_cells.end())
return 0.0;
return it->second;
}
/* Substitute a symbol with the data from another row.
Given a row of the form a * x + b and a substitution of the
form x = 3 * y + c the row will be updated to reflect the
expression 3 * a * y + a * c + b.
If the symbol does not exist in the row, this is a no-op.
*/
void substitute(const Symbol &symbol, const Row &row)
{
typedef CellMap::iterator iter_t;
iter_t it = m_cells.find(symbol);
if (it != m_cells.end())
{
double coefficient = it->second;
m_cells.erase(it);
insert(row, coefficient);
}
}
private:
CellMap m_cells;
double m_constant;
};
} // namespace impl
} // namespace kiwi

View File

@ -1,151 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
namespace kiwi
{
class SharedData
{
public:
SharedData() : m_refcount(0) {}
SharedData(const SharedData &other) : m_refcount(0) {}
int m_refcount;
private:
SharedData &operator=(const SharedData &other);
};
template <typename T>
class SharedDataPtr
{
public:
typedef T Type;
SharedDataPtr() : m_data(0) {}
explicit SharedDataPtr(T *data) : m_data(data)
{
incref(m_data);
}
~SharedDataPtr()
{
decref(m_data);
}
T *data()
{
return m_data;
}
const T *data() const
{
return m_data;
}
operator T *()
{
return m_data;
}
operator const T *() const
{
return m_data;
}
T *operator->()
{
return m_data;
}
const T *operator->() const
{
return m_data;
}
T &operator*()
{
return *m_data;
}
const T &operator*() const
{
return *m_data;
}
bool operator!() const
{
return !m_data;
}
bool operator<(const SharedDataPtr<T> &other) const
{
return m_data < other.m_data;
}
bool operator==(const SharedDataPtr<T> &other) const
{
return m_data == other.m_data;
}
bool operator!=(const SharedDataPtr<T> &other) const
{
return m_data != other.m_data;
}
SharedDataPtr(const SharedDataPtr<T> &other) : m_data(other.m_data)
{
incref(m_data);
}
SharedDataPtr<T> &operator=(const SharedDataPtr<T> &other)
{
if (m_data != other.m_data)
{
T *temp = m_data;
m_data = other.m_data;
incref(m_data);
decref(temp);
}
return *this;
}
SharedDataPtr<T> &operator=(T *other)
{
if (m_data != other)
{
T *temp = m_data;
m_data = other;
incref(m_data);
decref(temp);
}
return *this;
}
private:
static void incref(T *data)
{
if (data)
++data->m_refcount;
}
static void decref(T *data)
{
if (data && --data->m_refcount == 0)
delete data;
}
T *m_data;
};
} // namespace kiwi

View File

@ -1,178 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include "constraint.h"
#include "debug.h"
#include "solverimpl.h"
#include "strength.h"
#include "variable.h"
namespace kiwi
{
class Solver
{
public:
Solver() {}
~Solver() {}
/* Add a constraint to the solver.
Throws
------
DuplicateConstraint
The given constraint has already been added to the solver.
UnsatisfiableConstraint
The given constraint is required and cannot be satisfied.
*/
void addConstraint( const Constraint& constraint )
{
m_impl.addConstraint( constraint );
}
/* Remove a constraint from the solver.
Throws
------
UnknownConstraint
The given constraint has not been added to the solver.
*/
void removeConstraint( const Constraint& constraint )
{
m_impl.removeConstraint( constraint );
}
/* Test whether a constraint has been added to the solver.
*/
bool hasConstraint( const Constraint& constraint ) const
{
return m_impl.hasConstraint( constraint );
}
/* Add an edit variable to the solver.
This method should be called before the `suggestValue` method is
used to supply a suggested value for the given edit variable.
Throws
------
DuplicateEditVariable
The given edit variable has already been added to the solver.
BadRequiredStrength
The given strength is >= required.
*/
void addEditVariable( const Variable& variable, double strength )
{
m_impl.addEditVariable( variable, strength );
}
/* Remove an edit variable from the solver.
Throws
------
UnknownEditVariable
The given edit variable has not been added to the solver.
*/
void removeEditVariable( const Variable& variable )
{
m_impl.removeEditVariable( variable );
}
/* Test whether an edit variable has been added to the solver.
*/
bool hasEditVariable( const Variable& variable ) const
{
return m_impl.hasEditVariable( variable );
}
/* Suggest a value for the given edit variable.
This method should be used after an edit variable as been added to
the solver in order to suggest the value for that variable. After
all suggestions have been made, the `solve` method can be used to
update the values of all variables.
Throws
------
UnknownEditVariable
The given edit variable has not been added to the solver.
*/
void suggestValue( const Variable& variable, double value )
{
m_impl.suggestValue( variable, value );
}
/* Update the values of the external solver variables.
*/
void updateVariables()
{
m_impl.updateVariables();
}
/* Reset the solver to the empty starting condition.
This method resets the internal solver state to the empty starting
condition, as if no constraints or edit variables have been added.
This can be faster than deleting the solver and creating a new one
when the entire system must change, since it can avoid unecessary
heap (de)allocations.
*/
void reset()
{
m_impl.reset();
}
/* Dump a representation of the solver internals to stdout.
*/
void dump()
{
debug::dump( m_impl );
}
/* Dump a representation of the solver internals to a stream.
*/
void dump( std::ostream& out )
{
debug::dump( m_impl, out );
}
/* Dump a representation of the solver internals to a string.
*/
std::string dumps()
{
return debug::dumps( m_impl );
}
private:
Solver( const Solver& );
Solver& operator=( const Solver& );
impl::SolverImpl m_impl;
};
} // namespace kiwi

View File

@ -1,840 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <algorithm>
#include <limits>
#include <memory>
#include <vector>
#include "constraint.h"
#include "errors.h"
#include "expression.h"
#include "maptype.h"
#include "row.h"
#include "symbol.h"
#include "term.h"
#include "util.h"
#include "variable.h"
namespace kiwi
{
namespace impl
{
class SolverImpl
{
friend class DebugHelper;
struct Tag
{
Symbol marker;
Symbol other;
};
struct EditInfo
{
Tag tag;
Constraint constraint;
double constant;
};
typedef MapType<Variable, Symbol> VarMap;
typedef MapType<Symbol, Row*> RowMap;
typedef MapType<Constraint, Tag> CnMap;
typedef MapType<Variable, EditInfo> EditMap;
struct DualOptimizeGuard
{
DualOptimizeGuard( SolverImpl& impl ) : m_impl( impl ) {}
~DualOptimizeGuard() { m_impl.dualOptimize(); }
SolverImpl& m_impl;
};
public:
SolverImpl() : m_objective( new Row() ), m_id_tick( 1 ) {}
~SolverImpl() { clearRows(); }
/* Add a constraint to the solver.
Throws
------
DuplicateConstraint
The given constraint has already been added to the solver.
UnsatisfiableConstraint
The given constraint is required and cannot be satisfied.
*/
void addConstraint( const Constraint& constraint )
{
if( m_cns.find( constraint ) != m_cns.end() )
throw DuplicateConstraint( constraint );
// Creating a row causes symbols to be reserved for the variables
// in the constraint. If this method exits with an exception,
// then its possible those variables will linger in the var map.
// Since its likely that those variables will be used in other
// constraints and since exceptional conditions are uncommon,
// i'm not too worried about aggressive cleanup of the var map.
Tag tag;
std::unique_ptr<Row> rowptr( createRow( constraint, tag ) );
Symbol subject( chooseSubject( *rowptr, tag ) );
// If chooseSubject could not find a valid entering symbol, one
// last option is available if the entire row is composed of
// dummy variables. If the constant of the row is zero, then
// this represents redundant constraints and the new dummy
// marker can enter the basis. If the constant is non-zero,
// then it represents an unsatisfiable constraint.
if( subject.type() == Symbol::Invalid && allDummies( *rowptr ) )
{
if( !nearZero( rowptr->constant() ) )
throw UnsatisfiableConstraint( constraint );
else
subject = tag.marker;
}
// If an entering symbol still isn't found, then the row must
// be added using an artificial variable. If that fails, then
// the row represents an unsatisfiable constraint.
if( subject.type() == Symbol::Invalid )
{
if( !addWithArtificialVariable( *rowptr ) )
throw UnsatisfiableConstraint( constraint );
}
else
{
rowptr->solveFor( subject );
substitute( subject, *rowptr );
m_rows[ subject ] = rowptr.release();
}
m_cns[ constraint ] = tag;
// Optimizing after each constraint is added performs less
// aggregate work due to a smaller average system size. It
// also ensures the solver remains in a consistent state.
optimize( *m_objective );
}
/* Remove a constraint from the solver.
Throws
------
UnknownConstraint
The given constraint has not been added to the solver.
*/
void removeConstraint( const Constraint& constraint )
{
CnMap::iterator cn_it = m_cns.find( constraint );
if( cn_it == m_cns.end() )
throw UnknownConstraint( constraint );
Tag tag( cn_it->second );
m_cns.erase( cn_it );
// Remove the error effects from the objective function
// *before* pivoting, or substitutions into the objective
// will lead to incorrect solver results.
removeConstraintEffects( constraint, tag );
// If the marker is basic, simply drop the row. Otherwise,
// pivot the marker into the basis and then drop the row.
RowMap::iterator row_it = m_rows.find( tag.marker );
if( row_it != m_rows.end() )
{
std::unique_ptr<Row> rowptr( row_it->second );
m_rows.erase( row_it );
}
else
{
row_it = getMarkerLeavingRow( tag.marker );
if( row_it == m_rows.end() )
throw InternalSolverError( "failed to find leaving row" );
Symbol leaving( row_it->first );
std::unique_ptr<Row> rowptr( row_it->second );
m_rows.erase( row_it );
rowptr->solveFor( leaving, tag.marker );
substitute( tag.marker, *rowptr );
}
// Optimizing after each constraint is removed ensures that the
// solver remains consistent. It makes the solver api easier to
// use at a small tradeoff for speed.
optimize( *m_objective );
}
/* Test whether a constraint has been added to the solver.
*/
bool hasConstraint( const Constraint& constraint ) const
{
return m_cns.find( constraint ) != m_cns.end();
}
/* Add an edit variable to the solver.
This method should be called before the `suggestValue` method is
used to supply a suggested value for the given edit variable.
Throws
------
DuplicateEditVariable
The given edit variable has already been added to the solver.
BadRequiredStrength
The given strength is >= required.
*/
void addEditVariable( const Variable& variable, double strength )
{
if( m_edits.find( variable ) != m_edits.end() )
throw DuplicateEditVariable( variable );
strength = strength::clip( strength );
if( strength == strength::required )
throw BadRequiredStrength();
Constraint cn( Expression( variable ), OP_EQ, strength );
addConstraint( cn );
EditInfo info;
info.tag = m_cns[ cn ];
info.constraint = cn;
info.constant = 0.0;
m_edits[ variable ] = info;
}
/* Remove an edit variable from the solver.
Throws
------
UnknownEditVariable
The given edit variable has not been added to the solver.
*/
void removeEditVariable( const Variable& variable )
{
EditMap::iterator it = m_edits.find( variable );
if( it == m_edits.end() )
throw UnknownEditVariable( variable );
removeConstraint( it->second.constraint );
m_edits.erase( it );
}
/* Test whether an edit variable has been added to the solver.
*/
bool hasEditVariable( const Variable& variable ) const
{
return m_edits.find( variable ) != m_edits.end();
}
/* Suggest a value for the given edit variable.
This method should be used after an edit variable as been added to
the solver in order to suggest the value for that variable.
Throws
------
UnknownEditVariable
The given edit variable has not been added to the solver.
*/
void suggestValue( const Variable& variable, double value )
{
EditMap::iterator it = m_edits.find( variable );
if( it == m_edits.end() )
throw UnknownEditVariable( variable );
DualOptimizeGuard guard( *this );
EditInfo& info = it->second;
double delta = value - info.constant;
info.constant = value;
// Check first if the positive error variable is basic.
RowMap::iterator row_it = m_rows.find( info.tag.marker );
if( row_it != m_rows.end() )
{
if( row_it->second->add( -delta ) < 0.0 )
m_infeasible_rows.push_back( row_it->first );
return;
}
// Check next if the negative error variable is basic.
row_it = m_rows.find( info.tag.other );
if( row_it != m_rows.end() )
{
if( row_it->second->add( delta ) < 0.0 )
m_infeasible_rows.push_back( row_it->first );
return;
}
// Otherwise update each row where the error variables exist.
RowMap::iterator end = m_rows.end();
for( row_it = m_rows.begin(); row_it != end; ++row_it )
{
double coeff = row_it->second->coefficientFor( info.tag.marker );
if( coeff != 0.0 &&
row_it->second->add( delta * coeff ) < 0.0 &&
row_it->first.type() != Symbol::External )
m_infeasible_rows.push_back( row_it->first );
}
}
/* Update the values of the external solver variables.
*/
void updateVariables()
{
typedef RowMap::iterator row_iter_t;
typedef VarMap::iterator var_iter_t;
row_iter_t row_end = m_rows.end();
var_iter_t var_end = m_vars.end();
for( var_iter_t var_it = m_vars.begin(); var_it != var_end; ++var_it )
{
Variable& var( const_cast<Variable&>( var_it->first ) );
row_iter_t row_it = m_rows.find( var_it->second );
if( row_it == row_end )
var.setValue( 0.0 );
else
var.setValue( row_it->second->constant() );
}
}
/* Reset the solver to the empty starting condition.
This method resets the internal solver state to the empty starting
condition, as if no constraints or edit variables have been added.
This can be faster than deleting the solver and creating a new one
when the entire system must change, since it can avoid unecessary
heap (de)allocations.
*/
void reset()
{
clearRows();
m_cns.clear();
m_vars.clear();
m_edits.clear();
m_infeasible_rows.clear();
m_objective.reset( new Row() );
m_artificial.reset();
m_id_tick = 1;
}
private:
SolverImpl( const SolverImpl& );
SolverImpl& operator=( const SolverImpl& );
struct RowDeleter
{
template<typename T>
void operator()( T& pair ) { delete pair.second; }
};
void clearRows()
{
std::for_each( m_rows.begin(), m_rows.end(), RowDeleter() );
m_rows.clear();
}
/* Get the symbol for the given variable.
If a symbol does not exist for the variable, one will be created.
*/
Symbol getVarSymbol( const Variable& variable )
{
VarMap::iterator it = m_vars.find( variable );
if( it != m_vars.end() )
return it->second;
Symbol symbol( Symbol::External, m_id_tick++ );
m_vars[ variable ] = symbol;
return symbol;
}
/* Create a new Row object for the given constraint.
The terms in the constraint will be converted to cells in the row.
Any term in the constraint with a coefficient of zero is ignored.
This method uses the `getVarSymbol` method to get the symbol for
the variables added to the row. If the symbol for a given cell
variable is basic, the cell variable will be substituted with the
basic row.
The necessary slack and error variables will be added to the row.
If the constant for the row is negative, the sign for the row
will be inverted so the constant becomes positive.
The tag will be updated with the marker and error symbols to use
for tracking the movement of the constraint in the tableau.
*/
Row* createRow( const Constraint& constraint, Tag& tag )
{
typedef std::vector<Term>::const_iterator iter_t;
const Expression& expr( constraint.expression() );
Row* row = new Row( expr.constant() );
// Substitute the current basic variables into the row.
iter_t end = expr.terms().end();
for( iter_t it = expr.terms().begin(); it != end; ++it )
{
if( !nearZero( it->coefficient() ) )
{
Symbol symbol( getVarSymbol( it->variable() ) );
RowMap::const_iterator row_it = m_rows.find( symbol );
if( row_it != m_rows.end() )
row->insert( *row_it->second, it->coefficient() );
else
row->insert( symbol, it->coefficient() );
}
}
// Add the necessary slack, error, and dummy variables.
switch( constraint.op() )
{
case OP_LE:
case OP_GE:
{
double coeff = constraint.op() == OP_LE ? 1.0 : -1.0;
Symbol slack( Symbol::Slack, m_id_tick++ );
tag.marker = slack;
row->insert( slack, coeff );
if( constraint.strength() < strength::required )
{
Symbol error( Symbol::Error, m_id_tick++ );
tag.other = error;
row->insert( error, -coeff );
m_objective->insert( error, constraint.strength() );
}
break;
}
case OP_EQ:
{
if( constraint.strength() < strength::required )
{
Symbol errplus( Symbol::Error, m_id_tick++ );
Symbol errminus( Symbol::Error, m_id_tick++ );
tag.marker = errplus;
tag.other = errminus;
row->insert( errplus, -1.0 ); // v = eplus - eminus
row->insert( errminus, 1.0 ); // v - eplus + eminus = 0
m_objective->insert( errplus, constraint.strength() );
m_objective->insert( errminus, constraint.strength() );
}
else
{
Symbol dummy( Symbol::Dummy, m_id_tick++ );
tag.marker = dummy;
row->insert( dummy );
}
break;
}
}
// Ensure the row as a positive constant.
if( row->constant() < 0.0 )
row->reverseSign();
return row;
}
/* Choose the subject for solving for the row.
This method will choose the best subject for using as the solve
target for the row. An invalid symbol will be returned if there
is no valid target.
The symbols are chosen according to the following precedence:
1) The first symbol representing an external variable.
2) A negative slack or error tag variable.
If a subject cannot be found, an invalid symbol will be returned.
*/
Symbol chooseSubject( const Row& row, const Tag& tag )
{
typedef Row::CellMap::const_iterator iter_t;
iter_t end = row.cells().end();
for( iter_t it = row.cells().begin(); it != end; ++it )
{
if( it->first.type() == Symbol::External )
return it->first;
}
if( tag.marker.type() == Symbol::Slack || tag.marker.type() == Symbol::Error )
{
if( row.coefficientFor( tag.marker ) < 0.0 )
return tag.marker;
}
if( tag.other.type() == Symbol::Slack || tag.other.type() == Symbol::Error )
{
if( row.coefficientFor( tag.other ) < 0.0 )
return tag.other;
}
return Symbol();
}
/* Add the row to the tableau using an artificial variable.
This will return false if the constraint cannot be satisfied.
*/
bool addWithArtificialVariable( const Row& row )
{
// Create and add the artificial variable to the tableau
Symbol art( Symbol::Slack, m_id_tick++ );
m_rows[ art ] = new Row( row );
m_artificial.reset( new Row( row ) );
// Optimize the artificial objective. This is successful
// only if the artificial objective is optimized to zero.
optimize( *m_artificial );
bool success = nearZero( m_artificial->constant() );
m_artificial.reset();
// If the artificial variable is not basic, pivot the row so that
// it becomes basic. If the row is constant, exit early.
RowMap::iterator it = m_rows.find( art );
if( it != m_rows.end() )
{
std::unique_ptr<Row> rowptr( it->second );
m_rows.erase( it );
if( rowptr->cells().empty() )
return success;
Symbol entering( anyPivotableSymbol( *rowptr ) );
if( entering.type() == Symbol::Invalid )
return false; // unsatisfiable (will this ever happen?)
rowptr->solveFor( art, entering );
substitute( entering, *rowptr );
m_rows[ entering ] = rowptr.release();
}
// Remove the artificial variable from the tableau.
RowMap::iterator end = m_rows.end();
for( it = m_rows.begin(); it != end; ++it )
it->second->remove( art );
m_objective->remove( art );
return success;
}
/* Substitute the parametric symbol with the given row.
This method will substitute all instances of the parametric symbol
in the tableau and the objective function with the given row.
*/
void substitute( const Symbol& symbol, const Row& row )
{
typedef RowMap::iterator iter_t;
iter_t end = m_rows.end();
for( iter_t it = m_rows.begin(); it != end; ++it )
{
it->second->substitute( symbol, row );
if( it->first.type() != Symbol::External &&
it->second->constant() < 0.0 )
m_infeasible_rows.push_back( it->first );
}
m_objective->substitute( symbol, row );
if( m_artificial.get() )
m_artificial->substitute( symbol, row );
}
/* Optimize the system for the given objective function.
This method performs iterations of Phase 2 of the simplex method
until the objective function reaches a minimum.
Throws
------
InternalSolverError
The value of the objective function is unbounded.
*/
void optimize( const Row& objective )
{
while( true )
{
Symbol entering( getEnteringSymbol( objective ) );
if( entering.type() == Symbol::Invalid )
return;
RowMap::iterator it = getLeavingRow( entering );
if( it == m_rows.end() )
throw InternalSolverError( "The objective is unbounded." );
// pivot the entering symbol into the basis
Symbol leaving( it->first );
Row* row = it->second;
m_rows.erase( it );
row->solveFor( leaving, entering );
substitute( entering, *row );
m_rows[ entering ] = row;
}
}
/* Optimize the system using the dual of the simplex method.
The current state of the system should be such that the objective
function is optimal, but not feasible. This method will perform
an iteration of the dual simplex method to make the solution both
optimal and feasible.
Throws
------
InternalSolverError
The system cannot be dual optimized.
*/
void dualOptimize()
{
while( !m_infeasible_rows.empty() )
{
Symbol leaving( m_infeasible_rows.back() );
m_infeasible_rows.pop_back();
RowMap::iterator it = m_rows.find( leaving );
if( it != m_rows.end() && !nearZero( it->second->constant() ) &&
it->second->constant() < 0.0 )
{
Symbol entering( getDualEnteringSymbol( *it->second ) );
if( entering.type() == Symbol::Invalid )
throw InternalSolverError( "Dual optimize failed." );
// pivot the entering symbol into the basis
Row* row = it->second;
m_rows.erase( it );
row->solveFor( leaving, entering );
substitute( entering, *row );
m_rows[ entering ] = row;
}
}
}
/* Compute the entering variable for a pivot operation.
This method will return first symbol in the objective function which
is non-dummy and has a coefficient less than zero. If no symbol meets
the criteria, it means the objective function is at a minimum, and an
invalid symbol is returned.
*/
Symbol getEnteringSymbol( const Row& objective )
{
typedef Row::CellMap::const_iterator iter_t;
iter_t end = objective.cells().end();
for( iter_t it = objective.cells().begin(); it != end; ++it )
{
if( it->first.type() != Symbol::Dummy && it->second < 0.0 )
return it->first;
}
return Symbol();
}
/* Compute the entering symbol for the dual optimize operation.
This method will return the symbol in the row which has a positive
coefficient and yields the minimum ratio for its respective symbol
in the objective function. The provided row *must* be infeasible.
If no symbol is found which meats the criteria, an invalid symbol
is returned.
*/
Symbol getDualEnteringSymbol( const Row& row )
{
typedef Row::CellMap::const_iterator iter_t;
Symbol entering;
double ratio = std::numeric_limits<double>::max();
iter_t end = row.cells().end();
for( iter_t it = row.cells().begin(); it != end; ++it )
{
if( it->second > 0.0 && it->first.type() != Symbol::Dummy )
{
double coeff = m_objective->coefficientFor( it->first );
double r = coeff / it->second;
if( r < ratio )
{
ratio = r;
entering = it->first;
}
}
}
return entering;
}
/* Get the first Slack or Error symbol in the row.
If no such symbol is present, and Invalid symbol will be returned.
*/
Symbol anyPivotableSymbol( const Row& row )
{
typedef Row::CellMap::const_iterator iter_t;
iter_t end = row.cells().end();
for( iter_t it = row.cells().begin(); it != end; ++it )
{
const Symbol& sym( it->first );
if( sym.type() == Symbol::Slack || sym.type() == Symbol::Error )
return sym;
}
return Symbol();
}
/* Compute the row which holds the exit symbol for a pivot.
This method will return an iterator to the row in the row map
which holds the exit symbol. If no appropriate exit symbol is
found, the end() iterator will be returned. This indicates that
the objective function is unbounded.
*/
RowMap::iterator getLeavingRow( const Symbol& entering )
{
typedef RowMap::iterator iter_t;
double ratio = std::numeric_limits<double>::max();
iter_t end = m_rows.end();
iter_t found = m_rows.end();
for( iter_t it = m_rows.begin(); it != end; ++it )
{
if( it->first.type() != Symbol::External )
{
double temp = it->second->coefficientFor( entering );
if( temp < 0.0 )
{
double temp_ratio = -it->second->constant() / temp;
if( temp_ratio < ratio )
{
ratio = temp_ratio;
found = it;
}
}
}
}
return found;
}
/* Compute the leaving row for a marker variable.
This method will return an iterator to the row in the row map
which holds the given marker variable. The row will be chosen
according to the following precedence:
1) The row with a restricted basic varible and a negative coefficient
for the marker with the smallest ratio of -constant / coefficient.
2) The row with a restricted basic variable and the smallest ratio
of constant / coefficient.
3) The last unrestricted row which contains the marker.
If the marker does not exist in any row, the row map end() iterator
will be returned. This indicates an internal solver error since
the marker *should* exist somewhere in the tableau.
*/
RowMap::iterator getMarkerLeavingRow( const Symbol& marker )
{
const double dmax = std::numeric_limits<double>::max();
typedef RowMap::iterator iter_t;
double r1 = dmax;
double r2 = dmax;
iter_t end = m_rows.end();
iter_t first = end;
iter_t second = end;
iter_t third = end;
for( iter_t it = m_rows.begin(); it != end; ++it )
{
double c = it->second->coefficientFor( marker );
if( c == 0.0 )
continue;
if( it->first.type() == Symbol::External )
{
third = it;
}
else if( c < 0.0 )
{
double r = -it->second->constant() / c;
if( r < r1 )
{
r1 = r;
first = it;
}
}
else
{
double r = it->second->constant() / c;
if( r < r2 )
{
r2 = r;
second = it;
}
}
}
if( first != end )
return first;
if( second != end )
return second;
return third;
}
/* Remove the effects of a constraint on the objective function.
*/
void removeConstraintEffects( const Constraint& cn, const Tag& tag )
{
if( tag.marker.type() == Symbol::Error )
removeMarkerEffects( tag.marker, cn.strength() );
if( tag.other.type() == Symbol::Error )
removeMarkerEffects( tag.other, cn.strength() );
}
/* Remove the effects of an error marker on the objective function.
*/
void removeMarkerEffects( const Symbol& marker, double strength )
{
RowMap::iterator row_it = m_rows.find( marker );
if( row_it != m_rows.end() )
m_objective->insert( *row_it->second, -strength );
else
m_objective->insert( marker, -strength );
}
/* Test whether a row is composed of all dummy variables.
*/
bool allDummies( const Row& row )
{
typedef Row::CellMap::const_iterator iter_t;
iter_t end = row.cells().end();
for( iter_t it = row.cells().begin(); it != end; ++it )
{
if( it->first.type() != Symbol::Dummy )
return false;
}
return true;
}
CnMap m_cns;
RowMap m_rows;
VarMap m_vars;
EditMap m_edits;
std::vector<Symbol> m_infeasible_rows;
std::unique_ptr<Row> m_objective;
std::unique_ptr<Row> m_artificial;
Symbol::Id m_id_tick;
};
} // namespace impl
} // namespace kiwi

View File

@ -1,44 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <algorithm>
namespace kiwi
{
namespace strength
{
inline double create( double a, double b, double c, double w = 1.0 )
{
double result = 0.0;
result += std::max( 0.0, std::min( 1000.0, a * w ) ) * 1000000.0;
result += std::max( 0.0, std::min( 1000.0, b * w ) ) * 1000.0;
result += std::max( 0.0, std::min( 1000.0, c * w ) );
return result;
}
const double required = create( 1000.0, 1000.0, 1000.0 );
const double strong = create( 1.0, 0.0, 0.0 );
const double medium = create( 0.0, 1.0, 0.0 );
const double weak = create( 0.0, 0.0, 1.0 );
inline double clip( double value )
{
return std::max( 0.0, std::min( required, value ) );
}
} // namespace strength
} // namespace kiwi

View File

@ -1,68 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
namespace kiwi
{
namespace impl
{
class Symbol
{
public:
typedef unsigned long long Id;
enum Type
{
Invalid,
External,
Slack,
Error,
Dummy
};
Symbol() : m_id( 0 ), m_type( Invalid ) {}
Symbol( Type type, Id id ) : m_id( id ), m_type( type ) {}
~Symbol() {}
Id id() const
{
return m_id;
}
Type type() const
{
return m_type;
}
private:
Id m_id;
Type m_type;
friend bool operator<( const Symbol& lhs, const Symbol& rhs )
{
return lhs.m_id < rhs.m_id;
}
friend bool operator==( const Symbol& lhs, const Symbol& rhs )
{
return lhs.m_id == rhs.m_id;
}
};
} // namespace impl
} // namespace kiwi

View File

@ -1,685 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <vector>
#include "constraint.h"
#include "expression.h"
#include "term.h"
#include "variable.h"
namespace kiwi
{
// Variable multiply, divide, and unary invert
inline
Term operator*( const Variable& variable, double coefficient )
{
return Term( variable, coefficient );
}
inline
Term operator/( const Variable& variable, double denominator )
{
return variable * ( 1.0 / denominator );
}
inline
Term operator-( const Variable& variable )
{
return variable * -1.0;
}
// Term multiply, divide, and unary invert
inline
Term operator*( const Term& term, double coefficient )
{
return Term( term.variable(), term.coefficient() * coefficient );
}
inline
Term operator/( const Term& term, double denominator )
{
return term * ( 1.0 / denominator );
}
inline
Term operator-( const Term& term )
{
return term * -1.0;
}
// Expression multiply, divide, and unary invert
inline
Expression operator*( const Expression& expression, double coefficient )
{
std::vector<Term> terms;
terms.reserve( expression.terms().size() );
typedef std::vector<Term>::const_iterator iter_t;
iter_t begin = expression.terms().begin();
iter_t end = expression.terms().end();
for( iter_t it = begin; it != end; ++it )
terms.push_back( ( *it ) * coefficient );
return Expression( terms, expression.constant() * coefficient );
}
inline
Expression operator/( const Expression& expression, double denominator )
{
return expression * ( 1.0 / denominator );
}
inline
Expression operator-( const Expression& expression )
{
return expression * -1.0;
}
// Double multiply
inline
Expression operator*( double coefficient, const Expression& expression )
{
return expression * coefficient;
}
inline
Term operator*( double coefficient, const Term& term )
{
return term * coefficient;
}
inline
Term operator*( double coefficient, const Variable& variable )
{
return variable * coefficient;
}
// Expression add and subtract
inline
Expression operator+( const Expression& first, const Expression& second )
{
std::vector<Term> terms;
terms.reserve( first.terms().size() + second.terms().size() );
terms.insert( terms.begin(), first.terms().begin(), first.terms().end() );
terms.insert( terms.end(), second.terms().begin(), second.terms().end() );
return Expression( terms, first.constant() + second.constant() );
}
inline
Expression operator+( const Expression& first, const Term& second )
{
std::vector<Term> terms;
terms.reserve( first.terms().size() + 1 );
terms.insert( terms.begin(), first.terms().begin(), first.terms().end() );
terms.push_back( second );
return Expression( terms, first.constant() );
}
inline
Expression operator+( const Expression& expression, const Variable& variable )
{
return expression + Term( variable );
}
inline
Expression operator+( const Expression& expression, double constant )
{
return Expression( expression.terms(), expression.constant() + constant );
}
inline
Expression operator-( const Expression& first, const Expression& second )
{
return first + -second;
}
inline
Expression operator-( const Expression& expression, const Term& term )
{
return expression + -term;
}
inline
Expression operator-( const Expression& expression, const Variable& variable )
{
return expression + -variable;
}
inline
Expression operator-( const Expression& expression, double constant )
{
return expression + -constant;
}
// Term add and subtract
inline
Expression operator+( const Term& term, const Expression& expression )
{
return expression + term;
}
inline
Expression operator+( const Term& first, const Term& second )
{
std::vector<Term> terms;
terms.reserve( 2 );
terms.push_back( first );
terms.push_back( second );
return Expression( terms );
}
inline
Expression operator+( const Term& term, const Variable& variable )
{
return term + Term( variable );
}
inline
Expression operator+( const Term& term, double constant )
{
return Expression( term, constant );
}
inline
Expression operator-( const Term& term, const Expression& expression )
{
return -expression + term;
}
inline
Expression operator-( const Term& first, const Term& second )
{
return first + -second;
}
inline
Expression operator-( const Term& term, const Variable& variable )
{
return term + -variable;
}
inline
Expression operator-( const Term& term, double constant )
{
return term + -constant;
}
// Variable add and subtract
inline
Expression operator+( const Variable& variable, const Expression& expression )
{
return expression + variable;
}
inline
Expression operator+( const Variable& variable, const Term& term )
{
return term + variable;
}
inline
Expression operator+( const Variable& first, const Variable& second )
{
return Term( first ) + second;
}
inline
Expression operator+( const Variable& variable, double constant )
{
return Term( variable ) + constant;
}
inline
Expression operator-( const Variable& variable, const Expression& expression )
{
return variable + -expression;
}
inline
Expression operator-( const Variable& variable, const Term& term )
{
return variable + -term;
}
inline
Expression operator-( const Variable& first, const Variable& second )
{
return first + -second;
}
inline
Expression operator-( const Variable& variable, double constant )
{
return variable + -constant;
}
// Double add and subtract
inline
Expression operator+( double constant, const Expression& expression )
{
return expression + constant;
}
inline
Expression operator+( double constant, const Term& term )
{
return term + constant;
}
inline
Expression operator+( double constant, const Variable& variable )
{
return variable + constant;
}
inline
Expression operator-( double constant, const Expression& expression )
{
return -expression + constant;
}
inline
Expression operator-( double constant, const Term& term )
{
return -term + constant;
}
inline
Expression operator-( double constant, const Variable& variable )
{
return -variable + constant;
}
// Expression relations
inline
Constraint operator==( const Expression& first, const Expression& second )
{
return Constraint( first - second, OP_EQ );
}
inline
Constraint operator==( const Expression& expression, const Term& term )
{
return expression == Expression( term );
}
inline
Constraint operator==( const Expression& expression, const Variable& variable )
{
return expression == Term( variable );
}
inline
Constraint operator==( const Expression& expression, double constant )
{
return expression == Expression( constant );
}
inline
Constraint operator<=( const Expression& first, const Expression& second )
{
return Constraint( first - second, OP_LE );
}
inline
Constraint operator<=( const Expression& expression, const Term& term )
{
return expression <= Expression( term );
}
inline
Constraint operator<=( const Expression& expression, const Variable& variable )
{
return expression <= Term( variable );
}
inline
Constraint operator<=( const Expression& expression, double constant )
{
return expression <= Expression( constant );
}
inline
Constraint operator>=( const Expression& first, const Expression& second )
{
return Constraint( first - second, OP_GE );
}
inline
Constraint operator>=( const Expression& expression, const Term& term )
{
return expression >= Expression( term );
}
inline
Constraint operator>=( const Expression& expression, const Variable& variable )
{
return expression >= Term( variable );
}
inline
Constraint operator>=( const Expression& expression, double constant )
{
return expression >= Expression( constant );
}
// Term relations
inline
Constraint operator==( const Term& term, const Expression& expression )
{
return expression == term;
}
inline
Constraint operator==( const Term& first, const Term& second )
{
return Expression( first ) == second;
}
inline
Constraint operator==( const Term& term, const Variable& variable )
{
return Expression( term ) == variable;
}
inline
Constraint operator==( const Term& term, double constant )
{
return Expression( term ) == constant;
}
inline
Constraint operator<=( const Term& term, const Expression& expression )
{
return expression >= term;
}
inline
Constraint operator<=( const Term& first, const Term& second )
{
return Expression( first ) <= second;
}
inline
Constraint operator<=( const Term& term, const Variable& variable )
{
return Expression( term ) <= variable;
}
inline
Constraint operator<=( const Term& term, double constant )
{
return Expression( term ) <= constant;
}
inline
Constraint operator>=( const Term& term, const Expression& expression )
{
return expression <= term;
}
inline
Constraint operator>=( const Term& first, const Term& second )
{
return Expression( first ) >= second;
}
inline
Constraint operator>=( const Term& term, const Variable& variable )
{
return Expression( term ) >= variable;
}
inline
Constraint operator>=( const Term& term, double constant )
{
return Expression( term ) >= constant;
}
// Variable relations
inline
Constraint operator==( const Variable& variable, const Expression& expression )
{
return expression == variable;
}
inline
Constraint operator==( const Variable& variable, const Term& term )
{
return term == variable;
}
inline
Constraint operator==( const Variable& first, const Variable& second )
{
return Term( first ) == second;
}
inline
Constraint operator==( const Variable& variable, double constant )
{
return Term( variable ) == constant;
}
inline
Constraint operator<=( const Variable& variable, const Expression& expression )
{
return expression >= variable;
}
inline
Constraint operator<=( const Variable& variable, const Term& term )
{
return term >= variable;
}
inline
Constraint operator<=( const Variable& first, const Variable& second )
{
return Term( first ) <= second;
}
inline
Constraint operator<=( const Variable& variable, double constant )
{
return Term( variable ) <= constant;
}
inline
Constraint operator>=( const Variable& variable, const Expression& expression )
{
return expression <= variable;
}
inline
Constraint operator>=( const Variable& variable, const Term& term )
{
return term <= variable;
}
inline
Constraint operator>=( const Variable& first, const Variable& second )
{
return Term( first ) >= second;
}
inline
Constraint operator>=( const Variable& variable, double constant )
{
return Term( variable ) >= constant;
}
// Double relations
inline
Constraint operator==( double constant, const Expression& expression )
{
return expression == constant;
}
inline
Constraint operator==( double constant, const Term& term )
{
return term == constant;
}
inline
Constraint operator==( double constant, const Variable& variable )
{
return variable == constant;
}
inline
Constraint operator<=( double constant, const Expression& expression )
{
return expression >= constant;
}
inline
Constraint operator<=( double constant, const Term& term )
{
return term >= constant;
}
inline
Constraint operator<=( double constant, const Variable& variable )
{
return variable >= constant;
}
inline
Constraint operator>=( double constant, const Expression& expression )
{
return expression <= constant;
}
inline
Constraint operator>=( double constant, const Term& term )
{
return term <= constant;
}
inline
Constraint operator>=( double constant, const Variable& variable )
{
return variable <= constant;
}
// Constraint strength modifier
inline
Constraint operator|( const Constraint& constraint, double strength )
{
return Constraint( constraint, strength );
}
inline
Constraint operator|( double strength, const Constraint& constraint )
{
return constraint | strength;
}
} // namespace kiwi

View File

@ -1,51 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <utility>
#include "variable.h"
namespace kiwi
{
class Term
{
public:
Term( const Variable& variable, double coefficient = 1.0 ) :
m_variable( variable ), m_coefficient( coefficient ) {}
// to facilitate efficient map -> vector copies
Term( const std::pair<const Variable, double>& pair ) :
m_variable( pair.first ), m_coefficient( pair.second ) {}
~Term() {}
const Variable& variable() const
{
return m_variable;
}
double coefficient() const
{
return m_coefficient;
}
double value() const
{
return m_coefficient * m_variable.value();
}
private:
Variable m_variable;
double m_coefficient;
};
} // namespace kiwi

View File

@ -1,24 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
namespace kiwi
{
namespace impl
{
inline bool nearZero(double value)
{
const double eps = 1.0e-8;
return value < 0.0 ? -value < eps : value < eps;
}
} // namespace impl
} // namespace kiwi

View File

@ -1,111 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <memory>
#include <string>
#include "shareddata.h"
namespace kiwi
{
class Variable
{
public:
class Context
{
public:
Context() {}
virtual ~Context() {} // LCOV_EXCL_LINE
};
Variable(Context *context = 0) : m_data(new VariableData("", context)) {}
Variable(const std::string &name, Context *context = 0) : m_data(new VariableData(name, context)) {}
Variable(const char *name, Context *context = 0) : m_data(new VariableData(name, context)) {}
~Variable() {}
const std::string &name() const
{
return m_data->m_name;
}
void setName(const char *name)
{
m_data->m_name = name;
}
void setName(const std::string &name)
{
m_data->m_name = name;
}
Context *context() const
{
return m_data->m_context.get();
}
void setContext(Context *context)
{
m_data->m_context.reset(context);
}
double value() const
{
return m_data->m_value;
}
void setValue(double value)
{
m_data->m_value = value;
}
// operator== is used for symbolics
bool equals(const Variable &other)
{
return m_data == other.m_data;
}
private:
class VariableData : public SharedData
{
public:
VariableData(const std::string &name, Context *context) : SharedData(),
m_name(name),
m_context(context),
m_value(0.0) {}
VariableData(const char *name, Context *context) : SharedData(),
m_name(name),
m_context(context),
m_value(0.0) {}
~VariableData() {}
std::string m_name;
std::unique_ptr<Context> m_context;
double m_value;
private:
VariableData(const VariableData &other);
VariableData &operator=(const VariableData &other);
};
SharedDataPtr<VariableData> m_data;
friend bool operator<(const Variable &lhs, const Variable &rhs)
{
return lhs.m_data < rhs.m_data;
}
};
} // namespace kiwi

View File

@ -1,14 +0,0 @@
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2020, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#define KIWI_MAJOR_VERSION 1
#define KIWI_MINOR_VERSION 2
#define KIWI_MICRO_VERSION 0
#define KIWI_VERSION_HEX 0x010200
#define KIWI_VERSION "1.2.0"