NazaraEngine/include/Nazara/Math/Ray.inl

783 lines
20 KiB
C++

// Copyright (C) 2015 Gawaboumga (https://github.com/Gawaboumga) - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
namespace Nz
{
/*!
* \class Nz::Ray<T>
* \brief Math class that represents a ray or a straight line in 3D space
*
* This ray is meant to be understood like origin + lambda * direction, where lambda is a real positive parameter
*/
/*!
* \brief Constructs a Ray<T> object from its position and direction
*
* \param X X position
* \param Y Y position
* \param Z Z position
* \param DirectionX X component of the vector direction
* \param DirectionY Y component of the vector direction
* \param DirectionY Y component of the vector direction
*/
template<typename T>
Ray<T>::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
{
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
}
/*!
* \brief Constructs a Ray<T> object from two Vector3
*
* \param Origin Vector which represents the origin of the ray
* \param Direction Vector which represents the direction of the ray
*/
template<typename T>
Ray<T>::Ray(const Vector3<T>& Origin, const Vector3<T>& Direction)
{
Set(Origin, Direction);
}
/*!
* \brief Constructs a Ray<T> object from two arrays of three elements
*
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
*/
template<typename T>
Ray<T>::Ray(const T Origin[3], const T Direction[3])
{
Set(Origin, Direction);
}
/*!
* \brief Constructs a Ray<T> object from the intersection of two planes
*
* \param planeOne First plane
* \param planeTwo Second secant plane
*
* \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel
*/
template<typename T>
Ray<T>::Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo)
{
Set(planeOne, planeTwo);
}
/*!
* \brief Constructs a Ray<T> object from another type of Ray
*
* \param ray Ray of type U to convert to type T
*/
template<typename T>
template<typename U>
Ray<T>::Ray(const Ray<U>& ray)
{
Set(ray);
}
/*!
* \brief Constructs a Ray<T> object from two Vector3 from another type of Ray
*
* \param Origin Origin of type U to convert to type T
* \param Direction Direction of type U to convert to type T
*/
template<typename T>
template<typename U>
Ray<T>::Ray(const Vector3<U>& Origin, const Vector3<U>& Direction)
{
Set(Origin, Direction);
}
/*!
* \brief Finds the closest point of the ray from point
* \return The parameter where the point along this ray that is closest to the point provided
*
* \param point The point to get the closest approach to
*/
template<typename T>
T Ray<T>::ClosestPoint(const Vector3<T>& point) const
{
Vector3<T> delta = point - origin;
T vsq = direction.GetSquaredLength();
T proj = delta.DotProduct(direction);
return proj / vsq;
}
/*!
* \brief Gets the point along the ray for this parameter
* \return The point on the ray
*
* \param lambda Parameter to obtain a particular point on the ray
*/
template<typename T>
Vector3<T> Ray<T>::GetPoint(T lambda) const
{
return origin + lambda * direction;
}
/*!
* \brief Checks whether or not this ray intersects with the BoundingVolume
* \return true if it intersects
*
* \param volume BoundingVolume to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \remark If BoundingVolume is Extend_Infinite, then closestHit and furthestHit are equal to 0 et infinity
* \remark If BoundingVolume is Extend_Null, then closestHit and furthestHit are unchanged
* \remark If enumeration of BoundingVolume is not defined in Extend, a NazaraError is thrown and closestHit and furthestHit are unchanged
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const BoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
{
switch (volume.extend)
{
case Extend_Finite:
{
if (Intersect(volume.aabb))
return Intersect(volume.obb, closestHit, furthestHit);
return false;
}
case Extend_Infinite:
{
if (closestHit)
*closestHit = F(0.0);
if (furthestHit)
*furthestHit = std::numeric_limits<T>::infinity();
return true;
}
case Extend_Null:
return false;
}
NazaraError("Invalid extend type (0x" + String::Number(volume.extend, 16) + ')');
return false;
}
/*!
* \brief Checks whether or not this ray intersects with the Box
* \return true if it intersects
*
* \param box Box to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const Box<T>& box, T* closestHit, T* furthestHit) const
{
// http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/
T tfirst = F(0.0);
T tlast = std::numeric_limits<T>::infinity();
Vector3<T> boxMin = box.GetMinimum();
Vector3<T> boxMax = box.GetMaximum();
for (unsigned int i = 0; i < 3; ++i)
{
T dir = direction[i];
T ori = origin[i];
T max = boxMax[i];
T min = boxMin[i];
if (NumberEquals(dir, F(0.0)))
{
if (ori < max && ori > min)
continue;
return false;
}
T tmin = (min - ori) / dir;
T tmax = (max - ori) / dir;
if (tmin > tmax)
std::swap(tmin, tmax);
if (tmax < tfirst || tmin > tlast)
return false;
tfirst = std::max(tfirst, tmin);
tlast = std::min(tlast, tmax);
}
if (closestHit)
*closestHit = tfirst;
if (furthestHit)
*furthestHit = tlast;
return true;
}
/*!
* \brief Checks whether or not this ray intersects with the transform Matrix4 applied to the Box
* \return true if it intersects
*
* \param box Box to check
* \param transform Matrix4 which represents the transformation of the box
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const Box<T>& box, const Matrix4<T>& transform, T* closestHit, T* furthestHit) const
{
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
T tMin = F(0.0);
T tMax = std::numeric_limits<T>::infinity();
Vector3<T> boxMin = box.GetMinimum();
Vector3<T> boxMax = box.GetMaximum();
Vector3<T> delta = transform.GetTranslation() - origin;
// Test intersection with the 2 planes perpendicular to the OBB's X axis
for (unsigned int i = 0; i < 3; ++i)
{
Vector3<T> axis(transform(0, i), transform(1, i), transform(2, i));
T e = axis.DotProduct(delta);
T f = direction.DotProduct(axis);
if (!NumberEquals(f, F(0.0)))
{
T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane
T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
// We want t1 to represent the nearest intersection,
// so if it's not the case, invert t1 and t2
if (t1 > t2)
std::swap(t1, t2);
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
if (t2 < tMax)
tMax = t2;
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
if (t1 > tMin)
tMin = t1;
// And here's the trick :
// If "far" is closer than "near", then there is NO intersection.
if (tMax < tMin)
return false;
}
else
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
if (-e + boxMin[i] > F(0.0) || -e + boxMax[i] < F(0.0))
return false;
}
if (closestHit)
*closestHit = tMin;
if (furthestHit)
*furthestHit = tMax;
return true;
}
/*!
* \brief Checks whether or not this ray intersects with the OrientedBox
* \return true if it intersects
*
* \param orientedBox OrientedBox to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const OrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
{
Vector3<T> corner = orientedBox.GetCorner(BoxCorner_FarLeftBottom);
Vector3<T> oppositeCorner = orientedBox.GetCorner(BoxCorner_NearRightTop);
Vector3<T> width = (orientedBox.GetCorner(BoxCorner_NearLeftBottom) - corner);
Vector3<T> height = (orientedBox.GetCorner(BoxCorner_FarLeftTop) - corner);
Vector3<T> depth = (orientedBox.GetCorner(BoxCorner_FarRightBottom) - corner);
// Construction de la matrice de transformation de l'OBB
Matrix4<T> matrix(width.x, height.x, depth.x, corner.x,
width.y, height.y, depth.y, corner.y,
width.z, height.z, depth.z, corner.z,
F(0.0), F(0.0), F(0.0), F(1.0));
matrix.InverseAffine();
corner = matrix.Transform(corner);
oppositeCorner = matrix.Transform(oppositeCorner);
Box<T> tmpBox(corner, oppositeCorner);
Ray<T> tmpRay(matrix.Transform(origin), matrix.Transform(direction));
return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
}
/*!
* \brief Checks whether or not this ray intersects with the plane
* \return true if it intersects
*
* \param plane Plane to check
* \param hit Optional argument to get the parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const Plane<T>& plane, T* hit) const
{
T divisor = plane.normal.DotProduct(direction);
if (NumberEquals(divisor, F(0.0)))
return false; // Perpendicular
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
if (lambda < F(0.0))
return false; // The plane is 'behind' the ray.
if (hit)
*hit = lambda;
return true;
}
/*!
* \brief Checks whether or not this ray intersects with the sphere
* \return true if it intersects
*
* \param sphere Sphere to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const Sphere<T>& sphere, T* closestHit, T* furthestHit) const
{
Vector3<T> sphereRay = sphere.GetPosition() - origin;
T length = sphereRay.DotProduct(direction);
if (length < F(0.0))
return false; // ray is perpendicular to the vector origin - center
T squaredDistance = sphereRay.GetSquaredLength() - length * length;
T squaredRadius = sphere.radius * sphere.radius;
if (squaredDistance > squaredRadius)
return false; // if the ray is further than the radius
// Calcul des points d'intersection si besoin
if (closestHit || furthestHit)
{
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
if (closestHit)
*closestHit = length - deltaLambda;
if (furthestHit)
*furthestHit = length + deltaLambda;
}
return true;
}
/*!
* \brief Checks whether or not this ray intersects with the triangle
* \return true if it intersects
*
* \param firstPoint First vertex of the triangle
* \param secondPoint Second vertex of the triangle
* \param thirdPoint Third vertex of the triangle
* \param hit Optional argument to get the parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const Vector3<T>& firstPoint, const Vector3<T>& secondPoint, const Vector3<T>& thirdPoint, T* hit) const
{
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
Vector3<T> firstEdge = secondPoint - firstPoint;
Vector3<T> secondEdge = thirdPoint - firstPoint;
Vector3<T> P = Vector3<T>::CrossProduct(direction, secondEdge);
const T divisor = firstEdge.DotProduct(P);
if (NumberEquals(divisor, F(0.0)))
return false; // Ray lies in plane of triangle
Vector3<T> directionToPoint = origin - firstPoint;
T u = directionToPoint.DotProduct(P) / divisor;
if (u < F(0.0) || u > F(1.0))
return 0; // The intersection lies outside of the triangle
Vector3<T> Q = Vector3<T>::CrossProduct(directionToPoint, firstEdge);
T v = directionToPoint.DotProduct(Q) / divisor;
if (v < F(0.0) || u + v > F(1.0))
return 0; // The intersection lies outside of the triangle
T t = secondEdge.DotProduct(Q) / divisor;
if (t > F(0.0))
{
if (hit)
*hit = t;
return true;
}
return false;
}
/*!
* \brief Makes the ray with position (0, 0, 0) and direction (1, 0, 0)
* \return A reference to this ray with position (0, 0, 0) and direction (1, 0, 0)
*
* \see AxisX
*/
template<typename T>
Ray<T>& Ray<T>::MakeAxisX()
{
return Set(Vector3<T>::Zero(), Vector3<T>::UnitX());
}
/*!
* \brief Makes the ray with position (0, 0, 0) and direction (0, 1, 0)
* \return A reference to this ray with position (0, 0, 0) and direction (0, 1, 0)
*
* \see AxisY
*/
template<typename T>
Ray<T>& Ray<T>::MakeAxisY()
{
return Set(Vector3<T>::Zero(), Vector3<T>::UnitY());
}
/*!
* \brief Makes the ray with position (0, 0, 0) and direction (0, 0, 1)
* \return A reference to this ray with position (0, 0, 0) and direction (0, 0, 1)
*
* \see AxisZ
*/
template<typename T>
Ray<T>& Ray<T>::MakeAxisZ()
{
return Set(Vector3<T>::Zero(), Vector3<T>::UnitZ());
}
/*!
* \brief Sets the components of the ray with position and direction
* \return A reference to this ray
*
* \param X X position
* \param Y Y position
* \param Z Z position
* \param DirectionX X component of the vector direction
* \param DirectionY Y component of the vector direction
* \param DirectionY Y component of the vector direction
*/
template<typename T>
Ray<T>& Ray<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
{
direction.Set(directionX, directionY, directionZ);
origin.Set(X, Y, Z);
return *this;
}
/*!
* \brief Sets the components of the ray with position and direction
* \return A reference to this ray
*
* \param Origin Vector which represents the origin of the ray
* \param Direction Vector which represents the direction of the ray
*/
template<typename T>
Ray<T>& Ray<T>::Set(const Vector3<T>& Origin, const Vector3<T>& Direction)
{
direction = Direction;
origin = Origin;
return *this;
}
/*!
* \brief Sets the components of this ray from two arrays of three elements
* \return A reference to this ray
*
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
*/
template<typename T>
Ray<T>& Ray<T>::Set(const T Origin[3], const T Direction[3])
{
direction.Set(Direction);
origin.Set(Origin);
return *this;
}
/*!
* \brief Sets the components of this ray from the intersection of two planes
* \return A reference to this ray
*
* \param planeOne First plane
* \param planeTwo Second secant plane
*
* \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel
*/
template<typename T>
Ray<T>& Ray<T>::Set(const Plane<T>& planeOne, const Plane<T>& planeTwo)
{
T termOne = planeOne.normal.GetLength();
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
T termFour = planeTwo.normal.GetLength();
T det = termOne * termFour - termTwo * termTwo;
#if NAZARA_MATH_SAFE
if (NumberEquals(det, F(0.0)))
{
String error("Planes are parallel");
NazaraError(error);
throw std::domain_error(error);
}
#endif
T invdet = F(1.0) / det;
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
direction = planeOne.normal.CrossProduct(planeTwo.normal);
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
return *this;
}
/*!
* \brief Sets the components of the ray with components from another
* \return A reference to this ray
*
* \param ray The other ray
*/
template<typename T>
Ray<T>& Ray<T>::Set(const Ray& ray)
{
std::memcpy(this, &ray, sizeof(Ray));
return *this;
}
/*!
* \brief Sets the components of the ray from another type of Ray
* \return A reference to this ray
*
* \param ray Ray of type U to convert its components
*/
template<typename T>
template<typename U>
Ray<T>& Ray<T>::Set(const Ray<U>& ray)
{
direction.Set(ray.direction);
origin.Set(ray.origin);
return *this;
}
/*!
* \brief Sets the components of the ray from another type of Ray
* \return A reference to this ray
*
* \param Origin Origin of type U to convert to type T
* \param Direction Direction of type U to convert to type T
*/
template<typename T>
template<typename U>
Ray<T>& Ray<T>::Set(const Vector3<U>& Origin, const Vector3<U>& Direction)
{
direction.Set(Direction);
origin.Set(Origin);
return *this;
}
/*!
* \brief Gives a string representation
* \return A string representation of the object: "Ray(origin: Vector3(origin.x, origin.y, origin.z), direction: Vector3(direction.x, direction.y, direction.z))"
*/
template<typename T>
String Ray<T>::ToString() const
{
StringStream ss;
return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")";
}
/*!
* \brief Multiplies the direction ray with the lambda to get the point along the ray for this parameter
* \return The point on the ray
*
* \param lambda Parameter to obtain a particular point on the ray
*
* \see GetPoint
*/
template<typename T>
Vector3<T> Ray<T>::operator*(T lambda) const
{
return GetPoint(lambda);
}
/*!
* \brief Compares the ray to other one
* \return true if the ray are the same
*
* \param rec Other ray to compare with
*/
template<typename T>
bool Ray<T>::operator==(const Ray& ray) const
{
return direction == ray.direction && origin == ray.origin;
}
/*!
* \brief Compares the ray to other one
* \return false if the ray are the same
*
* \param rec Other ray to compare with
*/
template<typename T>
bool Ray<T>::operator!=(const Ray& ray) const
{
return !operator==(ray);
}
/*!
* \brief Shorthand for the ray (0, 0, 0), (1, 0, 0)
* \return A ray with position (0, 0, 0) and direction (1, 0, 0)
*
* \see MakeAxisX
*/
template<typename T>
Ray<T> Ray<T>::AxisX()
{
Ray axis;
axis.MakeAxisX();
return axis;
}
/*!
* \brief Shorthand for the ray (0, 0, 0), (0, 1, 0)
* \return A ray with position (0, 0, 0) and direction (0, 1, 0)
*
* \see MakeAxisY
*/
template<typename T>
Ray<T> Ray<T>::AxisY()
{
Ray axis;
axis.MakeAxisY();
return axis;
}
/*!
* \brief Shorthand for the ray (0, 0, 0), (0, 0, 1)
* \return A ray with position (0, 0, 0) and direction (0, 0, 1)
*
* \see MakeAxisZ
*/
template<typename T>
Ray<T> Ray<T>::AxisZ()
{
Ray axis;
axis.MakeAxisZ();
return axis;
}
/*!
* \brief Interpolates the ray to other one with a factor of interpolation
* \return A new ray which is the interpolation of two rectangles
*
* \param from Initial ray
* \param to Target ray
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
*
* \see Lerp
*/
template<typename T>
Ray<T> Ray<T>::Lerp(const Ray& from, const Ray& to, T interpolation)
{
return Ray<T>(Nz::Vector3<T>::Lerp(from.origin, to.origin, interpolation), Nz::Vector3<T>::Lerp(from.direction, to.direction, interpolation));
}
}
/*!
* \brief Output operator
* \return The stream
*
* \param out The stream
* \param ray The ray to output
*/
template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Ray<T>& ray)
{
return out << ray.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>