NazaraEngine/src/Nazara/Graphics/ForwardRenderQueue.cpp

397 lines
11 KiB
C++

// Copyright (C) 2014 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/ForwardRenderQueue.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Graphics/Debug.hpp>
namespace
{
enum ResourceType
{
ResourceType_Material,
ResourceType_SkeletalMesh,
ResourceType_StaticMesh
};
}
NzForwardRenderQueue::~NzForwardRenderQueue()
{
Clear(true);
}
void NzForwardRenderQueue::AddDrawable(const NzDrawable* drawable)
{
#if NAZARA_GRAPHICS_SAFE
if (!drawable)
{
NazaraError("Invalid drawable");
return;
}
#endif
otherDrawables.push_back(drawable);
}
void NzForwardRenderQueue::AddLight(const NzLight* light)
{
#if NAZARA_GRAPHICS_SAFE
if (!light)
{
NazaraError("Invalid light");
return;
}
#endif
switch (light->GetLightType())
{
case nzLightType_Directional:
directionalLights.push_back(light);
break;
case nzLightType_Point:
case nzLightType_Spot:
lights.push_back(light);
break;
#ifdef NAZARA_DEBUG
default:
NazaraError("Light type not handled (0x" + NzString::Number(light->GetLightType(), 16) + ')');
#endif
}
}
void NzForwardRenderQueue::AddSprite(const NzSprite* sprite)
{
#if NAZARA_GRAPHICS_SAFE
if (!sprite)
{
NazaraError("Invalid sprite");
return;
}
if (!sprite->IsDrawable())
{
NazaraError("Sprite is not drawable");
return;
}
#endif
sprites[sprite->GetMaterial()].push_back(sprite);
}
void NzForwardRenderQueue::AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix)
{
switch (subMesh->GetAnimationType())
{
case nzAnimationType_Skeletal:
{
///TODO
/*
** Il y a ici deux choses importantes à gérer:
** -Pour commencer, la mise en cache de std::vector suffisamment grands pour contenir le résultat du skinning
** l'objectif ici est d'éviter une allocation à chaque frame, donc de réutiliser un tableau existant
** Note: Il faudrait évaluer aussi la possibilité de conserver le buffer d'une frame à l'autre.
** Ceci permettant de ne pas skinner inutilement ce qui ne bouge pas, ou de skinner partiellement un mesh.
** Il faut cependant voir où stocker ce set de buffers, qui doit être communs à toutes les RQ d'une même scène.
**
** -Ensuite, la possibilité de regrouper les modèles skinnés identiques, une centaine de soldats marchant au pas
** ne devrait requérir qu'un skinning.
*/
NazaraError("Skeletal mesh not supported yet, sorry");
break;
}
case nzAnimationType_Static:
{
const NzStaticMesh* staticMesh = static_cast<const NzStaticMesh*>(subMesh);
if (material->IsEnabled(nzRendererParameter_Blend))
{
unsigned int index = transparentStaticModels.size();
transparentStaticModels.resize(index+1);
const NzBoxf& aabb = staticMesh->GetAABB();
TransparentStaticModel& data = transparentStaticModels.back();
data.boundingSphere = NzSpheref(transformMatrix.GetTranslation() + aabb.GetCenter(), aabb.GetSquaredRadius());
data.material = material;
data.mesh = staticMesh;
data.transformMatrix = transformMatrix;
transparentsModels.push_back(std::make_pair(index, true));
}
else
{
auto pair = opaqueModels.insert(std::make_pair(material, BatchedModelContainer::mapped_type()));
if (pair.second)
material->AddResourceListener(this, ResourceType_Material);
bool& used = std::get<0>(pair.first->second);
bool& enableInstancing = std::get<1>(pair.first->second);
used = true;
auto& meshMap = std::get<3>(pair.first->second);
auto pair2 = meshMap.insert(std::make_pair(staticMesh, BatchedStaticMeshContainer::mapped_type()));
if (pair2.second)
{
staticMesh->AddResourceListener(this, ResourceType_StaticMesh);
NzSpheref& squaredBoundingSphere = pair2.first->second.first;
squaredBoundingSphere.Set(staticMesh->GetAABB().GetSquaredBoundingSphere());
///TODO: Écouter le StaticMesh pour repérer tout changement de géométrie
}
std::vector<StaticData>& staticDataContainer = pair2.first->second.second;
unsigned int instanceCount = staticDataContainer.size() + 1;
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instanceCount >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
staticDataContainer.resize(instanceCount);
StaticData& data = staticDataContainer.back();
data.transformMatrix = transformMatrix;
}
break;
}
}
}
void NzForwardRenderQueue::Clear(bool fully)
{
directionalLights.clear();
lights.clear();
otherDrawables.clear();
transparentsModels.clear();
transparentSkeletalModels.clear();
transparentStaticModels.clear();
if (fully)
{
for (auto& matIt : opaqueModels)
{
const NzMaterial* material = matIt.first;
material->RemoveResourceListener(this);
BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second);
for (auto& meshIt : skeletalContainer)
{
const NzSkeletalMesh* skeletalMesh = meshIt.first;
skeletalMesh->RemoveResourceListener(this);
}
BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second);
for (auto& meshIt : staticContainer)
{
const NzStaticMesh* staticMesh = meshIt.first;
staticMesh->RemoveResourceListener(this);
}
}
opaqueModels.clear();
sprites.clear();
}
}
void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer)
{
struct TransparentModelComparator
{
bool operator()(const std::pair<unsigned int, bool>& index1, const std::pair<unsigned int, bool>& index2)
{
const NzSpheref& sphere1 = (index1.second) ?
queue->transparentStaticModels[index1.first].boundingSphere :
queue->transparentSkeletalModels[index1.first].boundingSphere;
const NzSpheref& sphere2 = (index2.second) ?
queue->transparentStaticModels[index2.first].boundingSphere :
queue->transparentSkeletalModels[index2.first].boundingSphere;
NzVector3f position1 = sphere1.GetNegativeVertex(viewerNormal);
NzVector3f position2 = sphere2.GetNegativeVertex(viewerNormal);
return nearPlane.Distance(position1) > nearPlane.Distance(position2);
}
NzForwardRenderQueue* queue;
NzPlanef nearPlane;
NzVector3f viewerNormal;
};
TransparentModelComparator comparator {this, viewer->GetFrustum().GetPlane(nzFrustumPlane_Near), viewer->GetForward()};
std::sort(transparentsModels.begin(), transparentsModels.end(), comparator);
}
bool NzForwardRenderQueue::OnResourceDestroy(const NzResource* resource, int index)
{
switch (index)
{
case ResourceType_Material:
opaqueModels.erase(static_cast<const NzMaterial*>(resource));
break;
case ResourceType_SkeletalMesh:
{
for (auto& pair : opaqueModels)
std::get<2>(pair.second).erase(static_cast<const NzSkeletalMesh*>(resource));
break;
}
case ResourceType_StaticMesh:
{
for (auto& pair : opaqueModels)
std::get<3>(pair.second).erase(static_cast<const NzStaticMesh*>(resource));
break;
}
}
return false; // Nous ne voulons plus recevoir d'évènement de cette ressource
}
void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int index)
{
// La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche
// des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources)
switch (index)
{
case ResourceType_Material:
for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it)
{
if (it->first == resource)
{
opaqueModels.erase(it);
break;
}
}
break;
case ResourceType_SkeletalMesh:
{
for (auto& pair : opaqueModels)
{
BatchedSkeletalMeshContainer& container = std::get<2>(pair.second);
for (auto it = container.begin(); it != container.end(); ++it)
{
if (it->first == resource)
{
container.erase(it);
break;
}
}
}
break;
}
case ResourceType_StaticMesh:
{
for (auto& pair : opaqueModels)
{
BatchedStaticMeshContainer& container = std::get<3 >(pair.second);
for (auto it = container.begin(); it != container.end(); ++it)
{
if (it->first == resource)
{
container.erase(it);
break;
}
}
}
break;
}
}
}
bool NzForwardRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance()->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance()->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::BatchedSkeletalMeshComparator::operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzIndexBuffer* iBuffer2 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer2 < buffer2;
}
bool NzForwardRenderQueue::BatchedStaticMeshComparator::operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzIndexBuffer* iBuffer2 = subMesh2->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
{
buffer1 = subMesh1->GetVertexBuffer()->GetBuffer();
buffer2 = subMesh2->GetVertexBuffer()->GetBuffer();
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer1 < buffer2;
}
else
return buffer1 < buffer2;
}