NazaraEngine/src/Nazara/Graphics/ForwardRenderTechnique.cpp

907 lines
31 KiB
C++

// Copyright (C) 2017 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/ForwardRenderTechnique.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Core/OffsetOf.hpp>
#include <Nazara/Graphics/AbstractBackground.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/Drawable.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/SceneData.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/RenderTarget.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/VertexStruct.hpp>
#include <limits>
#include <Nazara/Graphics/Debug.hpp>
namespace Nz
{
namespace
{
struct BillboardPoint
{
Color color;
Vector3f position;
Vector2f size;
Vector2f sinCos; // must follow `size` (both will be sent as a Vector4f)
Vector2f uv;
};
UInt32 s_maxQuads = std::numeric_limits<UInt16>::max() / 6;
UInt32 s_vertexBufferSize = 4 * 1024 * 1024; // 4 MiB
}
/*!
* \ingroup graphics
* \class Nz::ForwardRenderTechnique
* \brief Graphics class that represents the technique used in forward rendering
*/
/*!
* \brief Constructs a ForwardRenderTechnique object by default
*/
ForwardRenderTechnique::ForwardRenderTechnique() :
m_vertexBuffer(BufferType_Vertex),
m_maxLightPassPerObject(3)
{
ErrorFlags flags(ErrorFlag_ThrowException, true);
std::array<UInt8, 4> whitePixel = { {255, 255, 255, 255} };
m_whiteTexture.Create(ImageType_2D, PixelFormatType_RGBA8, 1, 1);
m_whiteTexture.Update(whitePixel.data());
m_vertexBuffer.Create(s_vertexBufferSize, DataStorage_Hardware, BufferUsage_Dynamic);
m_billboardPointBuffer.Reset(&s_billboardVertexDeclaration, &m_vertexBuffer);
m_spriteBuffer.Reset(VertexDeclaration::Get(VertexLayout_XYZ_Color_UV), &m_vertexBuffer);
}
/*!
* \brief Clears the data
*
* \param sceneData Data of the scene
*/
void ForwardRenderTechnique::Clear(const SceneData& sceneData) const
{
Renderer::Enable(RendererParameter_DepthBuffer, true);
Renderer::Enable(RendererParameter_DepthWrite, true);
Renderer::Clear(RendererBuffer_Depth);
if (sceneData.background)
sceneData.background->Draw(sceneData.viewer);
}
/*!
* \brief Draws the data of the scene
* \return true If successful
*
* \param sceneData Data of the scene
*
* \remark Produces a NazaraAssert if viewer of the scene is invalid
*/
bool ForwardRenderTechnique::Draw(const SceneData& sceneData) const
{
NazaraAssert(sceneData.viewer, "Invalid viewer");
m_renderQueue.Sort(sceneData.viewer);
if (!m_renderQueue.models.empty())
DrawModels(sceneData, m_renderQueue, m_renderQueue.models);
if (!m_renderQueue.basicSprites.empty())
DrawSprites(sceneData, m_renderQueue, m_renderQueue.basicSprites);
if (!m_renderQueue.billboards.empty())
DrawBillboards(sceneData, m_renderQueue, m_renderQueue.billboards);
if (!m_renderQueue.depthSortedModels.empty())
DrawModels(sceneData, m_renderQueue, m_renderQueue.depthSortedModels);
if (!m_renderQueue.depthSortedSprites.empty())
DrawSprites(sceneData, m_renderQueue, m_renderQueue.depthSortedSprites);
if (!m_renderQueue.depthSortedBillboards.empty())
DrawBillboards(sceneData, m_renderQueue, m_renderQueue.depthSortedBillboards);
if (!m_renderQueue.customDrawables.empty())
DrawCustomDrawables(sceneData, m_renderQueue, m_renderQueue.customDrawables);
return true;
}
/*!
* \brief Gets the maximum number of lights available per pass per object
* \return Maximum number of light simultaneously per object
*/
unsigned int ForwardRenderTechnique::GetMaxLightPassPerObject() const
{
return m_maxLightPassPerObject;
}
/*!
* \brief Gets the render queue
* \return Pointer to the render queue
*/
AbstractRenderQueue* ForwardRenderTechnique::GetRenderQueue()
{
return &m_renderQueue;
}
/*!
* \brief Gets the type of the current technique
* \return Type of the render technique
*/
RenderTechniqueType ForwardRenderTechnique::GetType() const
{
return RenderTechniqueType_BasicForward;
}
/*!
* \brief Sets the maximum number of lights available per pass per object
*
* \param passCount Maximum number of light simulatenously per object
*/
void ForwardRenderTechnique::SetMaxLightPassPerObject(unsigned int maxLightPassPerObject)
{
m_maxLightPassPerObject = maxLightPassPerObject;
}
/*!
* \brief Initializes the forward render technique
* \return true If successful
*
* \remark Produces a NazaraError if one shader creation failed
*/
bool ForwardRenderTechnique::Initialize()
{
try
{
ErrorFlags flags(ErrorFlag_ThrowException, true);
s_quadIndexBuffer.Reset(false, s_maxQuads * 6, DataStorage_Hardware, 0);
BufferMapper<IndexBuffer> mapper(s_quadIndexBuffer, BufferAccess_WriteOnly);
UInt16* indices = static_cast<UInt16*>(mapper.GetPointer());
for (unsigned int i = 0; i < s_maxQuads; ++i)
{
*indices++ = i * 4 + 0;
*indices++ = i * 4 + 2;
*indices++ = i * 4 + 1;
*indices++ = i * 4 + 2;
*indices++ = i * 4 + 3;
*indices++ = i * 4 + 1;
}
mapper.Unmap(); // No point to keep the buffer open any longer
// Quad buffer (used for instancing of billboards and sprites)
//Note: UV are computed in the shader
s_quadVertexBuffer.Reset(VertexDeclaration::Get(VertexLayout_XY), 4, DataStorage_Hardware, 0);
float vertices[2 * 4] = {
-0.5f, -0.5f,
0.5f, -0.5f,
-0.5f, 0.5f,
0.5f, 0.5f,
};
s_quadVertexBuffer.FillRaw(vertices, 0, sizeof(vertices));
// Declaration used when rendering the vertex billboards
s_billboardVertexDeclaration.EnableComponent(VertexComponent_Color, ComponentType_Color, NazaraOffsetOf(BillboardPoint, color));
s_billboardVertexDeclaration.EnableComponent(VertexComponent_Position, ComponentType_Float3, NazaraOffsetOf(BillboardPoint, position));
s_billboardVertexDeclaration.EnableComponent(VertexComponent_TexCoord, ComponentType_Float2, NazaraOffsetOf(BillboardPoint, uv));
s_billboardVertexDeclaration.EnableComponent(VertexComponent_Userdata0, ComponentType_Float4, NazaraOffsetOf(BillboardPoint, size)); // Includes sincos
// Declaration used when rendering the billboards with intancing
// The main advantage is the direct copy (std::memcpy) of data in the RenderQueue to the GPU buffer
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData0, ComponentType_Float3, NazaraOffsetOf(BasicRenderQueue::BillboardData, center));
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData1, ComponentType_Float4, NazaraOffsetOf(BasicRenderQueue::BillboardData, size)); // Englobe sincos
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData2, ComponentType_Color, NazaraOffsetOf(BasicRenderQueue::BillboardData, color));
s_reflectionSampler.SetFilterMode(SamplerFilter_Bilinear);
s_reflectionSampler.SetWrapMode(SamplerWrap_Clamp);
s_shadowSampler.SetFilterMode(SamplerFilter_Bilinear);
s_shadowSampler.SetWrapMode(SamplerWrap_Clamp);
std::array<UInt8, 6> whitePixels = { { 255, 255, 255, 255, 255, 255 } };
s_dummyReflection.Create(ImageType_Cubemap, PixelFormatType_L8, 1, 1);
s_dummyReflection.Update(whitePixels.data());
}
catch (const std::exception& e)
{
NazaraError("Failed to initialise: " + String(e.what()));
return false;
}
return true;
}
/*!
* \brief Uninitializes the forward render technique
*/
void ForwardRenderTechnique::Uninitialize()
{
s_dummyReflection.Destroy();
s_quadIndexBuffer.Reset();
s_quadVertexBuffer.Reset();
}
/*!
* \brief Chooses the nearest lights for one object
*
* \param object Sphere symbolising the object
* \param includeDirectionalLights Should directional lights be included in the computation
*/
void ForwardRenderTechnique::ChooseLights(const Spheref& object, bool includeDirectionalLights) const
{
m_lights.clear();
// First step: add all the lights into a common list and compute their score, exlucing those who have no chance of lighting the object
// (Those who are too far away).
if (includeDirectionalLights)
{
for (unsigned int i = 0; i < m_renderQueue.directionalLights.size(); ++i)
{
const auto& light = m_renderQueue.directionalLights[i];
if (IsDirectionalLightSuitable(object, light))
m_lights.push_back({LightType_Directional, ComputeDirectionalLightScore(object, light), i});
}
}
for (unsigned int i = 0; i < m_renderQueue.pointLights.size(); ++i)
{
const auto& light = m_renderQueue.pointLights[i];
if (IsPointLightSuitable(object, light))
m_lights.push_back({LightType_Point, ComputePointLightScore(object, light), i});
}
for (unsigned int i = 0; i < m_renderQueue.spotLights.size(); ++i)
{
const auto& light = m_renderQueue.spotLights[i];
if (IsSpotLightSuitable(object, light))
m_lights.push_back({LightType_Spot, ComputeSpotLightScore(object, light), i});
}
// Then, sort the lights according to their score
std::sort(m_lights.begin(), m_lights.end(), [](const LightIndex& light1, const LightIndex& light2)
{
return light1.score < light2.score;
});
}
void ForwardRenderTechnique::DrawBillboards(const SceneData& sceneData, const BasicRenderQueue& renderQueue, const RenderQueue<BasicRenderQueue::Billboard>& billboards) const
{
VertexBuffer* instanceBuffer = Renderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(&s_billboardInstanceDeclaration);
Renderer::SetVertexBuffer(&s_quadVertexBuffer);
Nz::BufferMapper<VertexBuffer> instanceBufferMapper;
std::size_t billboardCount = 0;
std::size_t maxBillboardPerDraw = instanceBuffer->GetVertexCount();
auto Commit = [&]()
{
if (billboardCount > 0)
{
instanceBufferMapper.Unmap();
Renderer::DrawPrimitivesInstanced(billboardCount, PrimitiveMode_TriangleStrip, 0, 4);
billboardCount = 0;
}
};
const RenderTarget* renderTarget = sceneData.viewer->GetTarget();
Recti fullscreenScissorRect = Recti(Vector2i(renderTarget->GetSize()));
const Material* lastMaterial = nullptr;
const MaterialPipeline* lastPipeline = nullptr;
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
const Texture* lastOverlay = nullptr;
Recti lastScissorRect = Recti(-1, -1);
const MaterialPipeline::Instance* pipelineInstance = nullptr;
for (const BasicRenderQueue::Billboard& billboard : billboards)
{
const Nz::Recti& scissorRect = (billboard.scissorRect.width > 0) ? billboard.scissorRect : fullscreenScissorRect;
if (billboard.material != lastMaterial || (billboard.material->IsScissorTestEnabled() && scissorRect != lastScissorRect))
{
Commit();
const MaterialPipeline* pipeline = billboard.material->GetPipeline();
if (lastPipeline != pipeline)
{
pipelineInstance = &billboard.material->GetPipeline()->Apply(ShaderFlags_Billboard | ShaderFlags_Instancing | ShaderFlags_VertexColor);
const Shader* shader = pipelineInstance->uberInstance->GetShader();
if (shader != lastShader)
{
// Index of uniforms in the shader
shaderUniforms = GetShaderUniforms(shader);
// Ambient color of the scene
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position of the camera
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
lastShader = shader;
}
lastPipeline = pipeline;
}
if (lastMaterial != billboard.material)
{
billboard.material->Apply(*pipelineInstance);
lastMaterial = billboard.material;
}
if (billboard.material->IsScissorTestEnabled() && scissorRect != lastScissorRect)
{
Renderer::SetScissorRect(scissorRect);
lastScissorRect = scissorRect;
}
}
if (!instanceBufferMapper.GetBuffer())
instanceBufferMapper.Map(instanceBuffer, BufferAccess_DiscardAndWrite);
std::memcpy(static_cast<Nz::UInt8*>(instanceBufferMapper.GetPointer()) + sizeof(BasicRenderQueue::BillboardData) * billboardCount, &billboard.data, sizeof(BasicRenderQueue::BillboardData));
if (++billboardCount >= maxBillboardPerDraw)
Commit();
}
Commit();
}
void ForwardRenderTechnique::DrawBillboards(const SceneData& sceneData, const BasicRenderQueue& renderQueue, const RenderQueue<BasicRenderQueue::BillboardChain>& billboards) const
{
VertexBuffer* instanceBuffer = Renderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(&s_billboardInstanceDeclaration);
Renderer::SetVertexBuffer(&s_quadVertexBuffer);
Nz::BufferMapper<VertexBuffer> instanceBufferMapper;
std::size_t billboardCount = 0;
std::size_t maxBillboardPerDraw = instanceBuffer->GetVertexCount();
auto Commit = [&]()
{
if (billboardCount > 0)
{
instanceBufferMapper.Unmap();
Renderer::DrawPrimitivesInstanced(billboardCount, PrimitiveMode_TriangleStrip, 0, 4);
billboardCount = 0;
}
};
const RenderTarget* renderTarget = sceneData.viewer->GetTarget();
Recti fullscreenScissorRect = Recti(Vector2i(renderTarget->GetSize()));
const Material* lastMaterial = nullptr;
const MaterialPipeline* lastPipeline = nullptr;
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
const Texture* lastOverlay = nullptr;
Recti lastScissorRect = Recti(-1, -1);
const MaterialPipeline::Instance* pipelineInstance = nullptr;
for (const BasicRenderQueue::BillboardChain& billboard : billboards)
{
const Nz::Recti& scissorRect = (billboard.scissorRect.width > 0) ? billboard.scissorRect : fullscreenScissorRect;
if (billboard.material != lastMaterial || (billboard.material->IsScissorTestEnabled() && scissorRect != lastScissorRect))
{
Commit();
const MaterialPipeline* pipeline = billboard.material->GetPipeline();
if (lastPipeline != pipeline)
{
pipelineInstance = &billboard.material->GetPipeline()->Apply(ShaderFlags_Billboard | ShaderFlags_Instancing | ShaderFlags_VertexColor);
const Shader* shader = pipelineInstance->uberInstance->GetShader();
if (shader != lastShader)
{
// Index of uniforms in the shader
shaderUniforms = GetShaderUniforms(shader);
// Ambient color of the scene
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position of the camera
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
lastShader = shader;
}
lastPipeline = pipeline;
}
if (lastMaterial != billboard.material)
{
billboard.material->Apply(*pipelineInstance);
lastMaterial = billboard.material;
}
if (billboard.material->IsScissorTestEnabled() && scissorRect != lastScissorRect)
{
Renderer::SetScissorRect(scissorRect);
lastScissorRect = scissorRect;
}
}
std::size_t billboardRemaining = billboard.billboardCount;
const BasicRenderQueue::BillboardData* billboardData = renderQueue.GetBillboardData(billboard.billboardIndex);
do
{
std::size_t renderedBillboardCount = std::min(billboardRemaining, maxBillboardPerDraw - billboardCount);
billboardRemaining -= renderedBillboardCount;
if (!instanceBufferMapper.GetBuffer())
instanceBufferMapper.Map(instanceBuffer, BufferAccess_DiscardAndWrite);
std::memcpy(static_cast<Nz::UInt8*>(instanceBufferMapper.GetPointer()) + sizeof(BasicRenderQueue::BillboardData) * billboardCount, billboardData, renderedBillboardCount * sizeof(BasicRenderQueue::BillboardData));
billboardCount += renderedBillboardCount;
billboardData += renderedBillboardCount;
if (billboardCount >= maxBillboardPerDraw)
Commit();
}
while (billboardRemaining > 0);
}
Commit();
}
void ForwardRenderTechnique::DrawCustomDrawables(const SceneData& sceneData, const BasicRenderQueue& renderQueue, const RenderQueue<BasicRenderQueue::CustomDrawable>& customDrawables) const
{
for (const BasicRenderQueue::CustomDrawable& customDrawable : customDrawables)
customDrawable.drawable->Draw();
}
void ForwardRenderTechnique::DrawModels(const SceneData& sceneData, const BasicRenderQueue& renderQueue, const Nz::RenderQueue<Nz::BasicRenderQueue::Model>& models) const
{
const RenderTarget* renderTarget = sceneData.viewer->GetTarget();
Recti fullscreenScissorRect = Recti(Vector2i(renderTarget->GetSize()));
const Material* lastMaterial = nullptr;
const MaterialPipeline* lastPipeline = nullptr;
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
Recti lastScissorRect = Recti(-1, -1);
const MaterialPipeline::Instance* pipelineInstance = nullptr;
///TODO: Reimplement instancing
for (const BasicRenderQueue::Model& model : models)
{
const MaterialPipeline* pipeline = model.material->GetPipeline();
if (lastPipeline != pipeline)
{
pipelineInstance = &model.material->GetPipeline()->Apply();
const Shader* shader = pipelineInstance->uberInstance->GetShader();
if (shader != lastShader)
{
// Index of uniforms in the shader
shaderUniforms = GetShaderUniforms(shader);
// Ambient color of the scene
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position of the camera
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
lastShader = shader;
}
lastPipeline = pipeline;
}
if (lastMaterial != model.material)
{
model.material->Apply(*pipelineInstance);
lastMaterial = model.material;
}
if (model.material->IsScissorTestEnabled())
{
const Nz::Recti& scissorRect = (model.scissorRect.width > 0) ? model.scissorRect : fullscreenScissorRect;
if (scissorRect != lastScissorRect)
{
Renderer::SetScissorRect(scissorRect);
lastScissorRect = scissorRect;
}
}
if (shaderUniforms->reflectionMap != -1)
{
unsigned int textureUnit = Material::GetTextureUnit(TextureMap_ReflectionCube);
Renderer::SetTexture(textureUnit, sceneData.globalReflectionTexture);
Renderer::SetTextureSampler(textureUnit, s_reflectionSampler);
}
// Handle draw call before rendering loop
Renderer::DrawCall drawFunc;
Renderer::DrawCallInstanced instancedDrawFunc;
unsigned int indexCount;
if (model.meshData.indexBuffer)
{
drawFunc = Renderer::DrawIndexedPrimitives;
instancedDrawFunc = Renderer::DrawIndexedPrimitivesInstanced;
indexCount = model.meshData.indexBuffer->GetIndexCount();
}
else
{
drawFunc = Renderer::DrawPrimitives;
instancedDrawFunc = Renderer::DrawPrimitivesInstanced;
indexCount = model.meshData.vertexBuffer->GetVertexCount();
}
Renderer::SetIndexBuffer(model.meshData.indexBuffer);
Renderer::SetVertexBuffer(model.meshData.vertexBuffer);
if (shaderUniforms->hasLightUniforms)
{
ChooseLights(model.obbSphere);
std::size_t lightCount = m_lights.size();
Nz::Renderer::SetMatrix(Nz::MatrixType_World, model.matrix);
std::size_t lightIndex = 0;
RendererComparison oldDepthFunc = Renderer::GetDepthFunc(); // In the case where we have to change it
std::size_t passCount = (lightCount == 0) ? 1 : (lightCount - 1) / NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS + 1;
for (std::size_t pass = 0; pass < passCount; ++pass)
{
lightCount -= std::min<std::size_t>(lightCount, NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS);
if (pass == 1)
{
// To add the result of light computations
// We won't interfere with materials parameters because we only render opaques objects
// (A.K.A., without blending)
// About the depth function, it must be applied only the first time
Renderer::Enable(RendererParameter_Blend, true);
Renderer::SetBlendFunc(BlendFunc_One, BlendFunc_One);
Renderer::SetDepthFunc(RendererComparison_Equal);
}
// Sends the light uniforms to the shader
for (unsigned int i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(lastShader, shaderUniforms->lightUniforms, i, lightIndex++, shaderUniforms->lightOffset*i);
// And we draw
drawFunc(model.meshData.primitiveMode, 0, indexCount);
}
Renderer::Enable(RendererParameter_Blend, false);
Renderer::SetDepthFunc(oldDepthFunc);
}
else
{
Renderer::SetMatrix(MatrixType_World, model.matrix);
drawFunc(model.meshData.primitiveMode, 0, indexCount);
}
}
}
void ForwardRenderTechnique::DrawSprites(const SceneData& sceneData, const BasicRenderQueue& renderQueue, const RenderQueue<BasicRenderQueue::SpriteChain>& spriteList) const
{
const RenderTarget* renderTarget = sceneData.viewer->GetTarget();
Recti fullscreenScissorRect = Recti(Vector2i(renderTarget->GetSize()));
Renderer::SetIndexBuffer(&s_quadIndexBuffer);
Renderer::SetMatrix(MatrixType_World, Matrix4f::Identity());
Renderer::SetVertexBuffer(&m_spriteBuffer);
const unsigned int overlayTextureUnit = Material::GetTextureUnit(TextureMap_Overlay);
const std::size_t maxSpriteCount = std::min<std::size_t>(s_maxQuads, m_spriteBuffer.GetVertexCount() / 4);
m_spriteChains.clear();
auto Commit = [&]()
{
std::size_t spriteChainCount = m_spriteChains.size();
if (spriteChainCount > 0)
{
std::size_t spriteChain = 0; // Which chain of sprites are we treating
std::size_t spriteChainOffset = 0; // Where was the last offset where we stopped in the last chain
do
{
// We open the buffer in writing mode
BufferMapper<VertexBuffer> vertexMapper(m_spriteBuffer, BufferAccess_DiscardAndWrite);
VertexStruct_XYZ_Color_UV* vertices = static_cast<VertexStruct_XYZ_Color_UV*>(vertexMapper.GetPointer());
std::size_t spriteCount = 0;
do
{
const VertexStruct_XYZ_Color_UV* currentChain = m_spriteChains[spriteChain].first;
std::size_t currentChainSpriteCount = m_spriteChains[spriteChain].second;
std::size_t count = std::min(maxSpriteCount - spriteCount, currentChainSpriteCount - spriteChainOffset);
std::memcpy(vertices, currentChain + spriteChainOffset * 4, 4 * count * sizeof(VertexStruct_XYZ_Color_UV));
vertices += count * 4;
spriteCount += count;
spriteChainOffset += count;
// Have we treated the entire chain ?
if (spriteChainOffset == currentChainSpriteCount)
{
spriteChain++;
spriteChainOffset = 0;
}
}
while (spriteCount < maxSpriteCount && spriteChain < spriteChainCount);
vertexMapper.Unmap();
Renderer::DrawIndexedPrimitives(PrimitiveMode_TriangleList, 0, spriteCount * 6);
}
while (spriteChain < spriteChainCount);
}
m_spriteChains.clear();
};
const Material* lastMaterial = nullptr;
const MaterialPipeline* lastPipeline = nullptr;
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
const Texture* lastOverlay = nullptr;
Recti lastScissorRect = Recti(-1, -1);
const MaterialPipeline::Instance* pipelineInstance = nullptr;
for (const BasicRenderQueue::SpriteChain& basicSprites : spriteList)
{
const Nz::Recti& scissorRect = (basicSprites.scissorRect.width > 0) ? basicSprites.scissorRect : fullscreenScissorRect;
if (basicSprites.material != lastMaterial || basicSprites.overlay != lastOverlay || (basicSprites.material->IsScissorTestEnabled() && scissorRect != lastScissorRect))
{
Commit();
const MaterialPipeline* pipeline = basicSprites.material->GetPipeline();
if (lastPipeline != pipeline)
{
pipelineInstance = &basicSprites.material->GetPipeline()->Apply(ShaderFlags_TextureOverlay | ShaderFlags_VertexColor);
const Shader* shader = pipelineInstance->uberInstance->GetShader();
if (shader != lastShader)
{
// Index of uniforms in the shader
shaderUniforms = GetShaderUniforms(shader);
// Ambient color of the scene
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position of the camera
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
// Overlay texture unit
shader->SendInteger(shaderUniforms->textureOverlay, overlayTextureUnit);
lastShader = shader;
}
lastPipeline = pipeline;
}
if (lastMaterial != basicSprites.material)
{
basicSprites.material->Apply(*pipelineInstance);
Renderer::SetTextureSampler(overlayTextureUnit, basicSprites.material->GetDiffuseSampler());
lastMaterial = basicSprites.material;
}
const Nz::Texture* overlayTexture = (basicSprites.overlay) ? basicSprites.overlay.Get() : &m_whiteTexture;
if (overlayTexture != lastOverlay)
{
Renderer::SetTexture(overlayTextureUnit, overlayTexture);
lastOverlay = overlayTexture;
}
if (basicSprites.material->IsScissorTestEnabled() && scissorRect != lastScissorRect)
{
Renderer::SetScissorRect(scissorRect);
lastScissorRect = scissorRect;
}
}
m_spriteChains.emplace_back(basicSprites.vertices, basicSprites.spriteCount);
}
Commit();
}
const ForwardRenderTechnique::ShaderUniforms* ForwardRenderTechnique::GetShaderUniforms(const Shader* shader) const
{
auto it = m_shaderUniforms.find(shader);
if (it == m_shaderUniforms.end())
{
ShaderUniforms uniforms;
uniforms.shaderReleaseSlot.Connect(shader->OnShaderRelease, this, &ForwardRenderTechnique::OnShaderInvalidated);
uniforms.shaderUniformInvalidatedSlot.Connect(shader->OnShaderUniformInvalidated, this, &ForwardRenderTechnique::OnShaderInvalidated);
uniforms.eyePosition = shader->GetUniformLocation("EyePosition");
uniforms.reflectionMap = shader->GetUniformLocation("ReflectionMap");
uniforms.sceneAmbient = shader->GetUniformLocation("SceneAmbient");
uniforms.textureOverlay = shader->GetUniformLocation("TextureOverlay");
int type0Location = shader->GetUniformLocation("Lights[0].type");
int type1Location = shader->GetUniformLocation("Lights[1].type");
if (type0Location > 0 && type1Location > 0)
{
uniforms.hasLightUniforms = true;
uniforms.lightOffset = type1Location - type0Location;
uniforms.lightUniforms.ubo = false;
uniforms.lightUniforms.locations.type = type0Location;
uniforms.lightUniforms.locations.color = shader->GetUniformLocation("Lights[0].color");
uniforms.lightUniforms.locations.factors = shader->GetUniformLocation("Lights[0].factors");
uniforms.lightUniforms.locations.lightViewProjMatrix = shader->GetUniformLocation("LightViewProjMatrix[0]");
uniforms.lightUniforms.locations.parameters1 = shader->GetUniformLocation("Lights[0].parameters1");
uniforms.lightUniforms.locations.parameters2 = shader->GetUniformLocation("Lights[0].parameters2");
uniforms.lightUniforms.locations.parameters3 = shader->GetUniformLocation("Lights[0].parameters3");
uniforms.lightUniforms.locations.shadowMapping = shader->GetUniformLocation("Lights[0].shadowMapping");
}
else
uniforms.hasLightUniforms = false;
it = m_shaderUniforms.emplace(shader, std::move(uniforms)).first;
}
return &it->second;
}
/*!
* \brief Handle the invalidation of a shader
*
* \param shader Shader being invalidated
*/
void ForwardRenderTechnique::OnShaderInvalidated(const Shader* shader) const
{
m_shaderUniforms.erase(shader);
}
/*!
* \brief Sends the uniforms for light
*
* \param shader Shader to send uniforms to
* \param uniforms Uniforms to send
* \param index Index of the light
* \param uniformOffset Offset for the uniform
* \param availableTextureUnit Unit texture available
*/
void ForwardRenderTechnique::SendLightUniforms(const Shader* shader, const LightUniforms& uniforms, unsigned int index, unsigned int lightIndex, unsigned int uniformOffset) const
{
if (lightIndex < m_lights.size())
{
const LightIndex& lightInfo = m_lights[lightIndex];
shader->SendInteger(uniforms.locations.type + uniformOffset, lightInfo.type); //< Sends the light type
switch (lightInfo.type)
{
case LightType_Directional:
{
const auto& light = m_renderQueue.directionalLights[lightInfo.index];
shader->SendColor(uniforms.locations.color + uniformOffset, light.color);
shader->SendVector(uniforms.locations.factors + uniformOffset, Vector2f(light.ambientFactor, light.diffuseFactor));
shader->SendVector(uniforms.locations.parameters1 + uniformOffset, Vector4f(light.direction));
if (uniforms.locations.shadowMapping != -1)
shader->SendBoolean(uniforms.locations.shadowMapping + uniformOffset, light.shadowMap != nullptr);
if (light.shadowMap)
{
unsigned int textureUnit2D = Material::GetTextureUnit(static_cast<TextureMap>(TextureMap_Shadow2D_1 + index));
Renderer::SetTexture(textureUnit2D, light.shadowMap);
Renderer::SetTextureSampler(textureUnit2D, s_shadowSampler);
if (uniforms.locations.lightViewProjMatrix != -1)
shader->SendMatrix(uniforms.locations.lightViewProjMatrix + index, light.transformMatrix);
}
break;
}
case LightType_Point:
{
const auto& light = m_renderQueue.pointLights[lightInfo.index];
shader->SendColor(uniforms.locations.color + uniformOffset, light.color);
shader->SendVector(uniforms.locations.factors + uniformOffset, Vector2f(light.ambientFactor, light.diffuseFactor));
shader->SendVector(uniforms.locations.parameters1 + uniformOffset, Vector4f(light.position, light.attenuation));
shader->SendVector(uniforms.locations.parameters2 + uniformOffset, Vector4f(0.f, 0.f, 0.f, light.invRadius));
if (uniforms.locations.shadowMapping != -1)
shader->SendBoolean(uniforms.locations.shadowMapping + uniformOffset, light.shadowMap != nullptr);
if (light.shadowMap)
{
unsigned int textureUnitCube = Material::GetTextureUnit(static_cast<TextureMap>(TextureMap_ShadowCube_1 + index));
Renderer::SetTexture(textureUnitCube, light.shadowMap);
Renderer::SetTextureSampler(textureUnitCube, s_shadowSampler);
}
break;
}
case LightType_Spot:
{
const auto& light = m_renderQueue.spotLights[lightInfo.index];
shader->SendColor(uniforms.locations.color + uniformOffset, light.color);
shader->SendVector(uniforms.locations.factors + uniformOffset, Vector2f(light.ambientFactor, light.diffuseFactor));
shader->SendVector(uniforms.locations.parameters1 + uniformOffset, Vector4f(light.position, light.attenuation));
shader->SendVector(uniforms.locations.parameters2 + uniformOffset, Vector4f(light.direction, light.invRadius));
shader->SendVector(uniforms.locations.parameters3 + uniformOffset, Vector2f(light.innerAngleCosine, light.outerAngleCosine));
if (uniforms.locations.shadowMapping != -1)
shader->SendBoolean(uniforms.locations.shadowMapping + uniformOffset, light.shadowMap != nullptr);
if (light.shadowMap)
{
unsigned int textureUnit2D = Material::GetTextureUnit(static_cast<TextureMap>(TextureMap_Shadow2D_1 + index));
Renderer::SetTexture(textureUnit2D, light.shadowMap);
Renderer::SetTextureSampler(textureUnit2D, s_shadowSampler);
if (uniforms.locations.lightViewProjMatrix != -1)
shader->SendMatrix(uniforms.locations.lightViewProjMatrix + index, light.transformMatrix);
}
break;
}
}
}
else
{
if (uniforms.locations.type != -1)
shader->SendInteger(uniforms.locations.type + uniformOffset, -1); //< Disable the light in the shader
}
}
IndexBuffer ForwardRenderTechnique::s_quadIndexBuffer;
Texture ForwardRenderTechnique::s_dummyReflection;
TextureSampler ForwardRenderTechnique::s_reflectionSampler;
TextureSampler ForwardRenderTechnique::s_shadowSampler;
VertexBuffer ForwardRenderTechnique::s_quadVertexBuffer;
VertexDeclaration ForwardRenderTechnique::s_billboardInstanceDeclaration;
VertexDeclaration ForwardRenderTechnique::s_billboardVertexDeclaration;
}