917 lines
28 KiB
C++
917 lines
28 KiB
C++
// Copyright (C) 2013 Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Utility module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
/*
|
|
* vcacheopt.h - Vertex Cache Optimizer
|
|
* Copyright 2009 Michael Georgoulpoulos <mgeorgoulopoulos at gmail>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <Nazara/Utility/Algorithm.hpp>
|
|
#include <Nazara/Math/Basic.hpp>
|
|
#include <Nazara/Utility/IndexIterator.hpp>
|
|
#include <algorithm>
|
|
#include <unordered_map>
|
|
#include <Nazara/Utility/Debug.hpp>
|
|
|
|
namespace
|
|
{
|
|
class IcoSphereBuilder
|
|
{
|
|
public:
|
|
IcoSphereBuilder(const NzMatrix4f& matrix) :
|
|
m_matrix(matrix)
|
|
{
|
|
}
|
|
|
|
void Generate(float size, unsigned int recursionLevel, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset)
|
|
{
|
|
// Grandement inspiré de http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
|
|
const float t = (1.f + 2.236067f)/2.f;
|
|
|
|
m_cache.clear();
|
|
m_size = size;
|
|
m_vertices = vertices;
|
|
m_vertexIndex = 0;
|
|
|
|
// Sommets de base
|
|
AddVertex({-1.f, t, 0.f});
|
|
AddVertex({ 1.f, t, 0.f});
|
|
AddVertex({-1.f, -t, 0.f});
|
|
AddVertex({ 1.f, -t, 0.f});
|
|
|
|
AddVertex({0.f, -1.f, t});
|
|
AddVertex({0.f, 1.f, t});
|
|
AddVertex({0.f, -1.f, -t});
|
|
AddVertex({0.f, 1.f, -t});
|
|
|
|
AddVertex({ t, 0.f, -1.f});
|
|
AddVertex({ t, 0.f, 1.f});
|
|
AddVertex({-t, 0.f, -1.f});
|
|
AddVertex({-t, 0.f, 1.f});
|
|
|
|
std::vector<NzVector3ui> triangles;
|
|
triangles.reserve(20 * NzIntegralPow(4, recursionLevel));
|
|
|
|
// Cinq triangles autour du premier point
|
|
triangles.push_back({0, 11, 5});
|
|
triangles.push_back({0, 5, 1});
|
|
triangles.push_back({0, 1, 7});
|
|
triangles.push_back({0, 7, 10});
|
|
triangles.push_back({0, 10, 11});
|
|
|
|
// Cinq faces adjaçentes
|
|
triangles.push_back({ 1, 5, 9});
|
|
triangles.push_back({ 5, 11, 4});
|
|
triangles.push_back({11, 10, 2});
|
|
triangles.push_back({10, 7, 6});
|
|
triangles.push_back({ 7, 1, 8});
|
|
|
|
// Cinq triangles autour du troisième point
|
|
triangles.push_back({3, 9, 4});
|
|
triangles.push_back({3, 4, 2});
|
|
triangles.push_back({3, 2, 6});
|
|
triangles.push_back({3, 6, 8});
|
|
triangles.push_back({3, 8, 9});
|
|
|
|
// Cinq faces adjaçentes
|
|
triangles.push_back({4, 9, 5});
|
|
triangles.push_back({2, 4, 11});
|
|
triangles.push_back({6, 2, 10});
|
|
triangles.push_back({8, 6, 7});
|
|
triangles.push_back({9, 8, 1});
|
|
|
|
// Et maintenant on affine la sphère
|
|
for (unsigned int i = 0; i < recursionLevel; ++i)
|
|
{
|
|
for (NzVector3ui& triangle : triangles)
|
|
{
|
|
unsigned int a = GetMiddleVertex(triangle.x, triangle.y);
|
|
unsigned int b = GetMiddleVertex(triangle.y, triangle.z);
|
|
unsigned int c = GetMiddleVertex(triangle.z, triangle.x);
|
|
|
|
triangles.push_back({triangle.x, a, c});
|
|
triangles.push_back({triangle.y, b, a});
|
|
triangles.push_back({triangle.z, c, b});
|
|
|
|
triangle.Set(a, b, c); // Réutilisation du triangle
|
|
}
|
|
}
|
|
|
|
for (const NzVector3ui& triangle : triangles)
|
|
{
|
|
*indices++ = triangle.x + indexOffset;
|
|
*indices++ = triangle.y + indexOffset;
|
|
*indices++ = triangle.z + indexOffset;
|
|
}
|
|
|
|
if (aabb)
|
|
{
|
|
NzVector3f totalSize = size * m_matrix.GetScale();
|
|
aabb->Set(-totalSize, totalSize);
|
|
}
|
|
}
|
|
|
|
unsigned int AddVertex(const NzVector3f& position)
|
|
{
|
|
NzMeshVertex& vertex = m_vertices[m_vertexIndex];
|
|
|
|
vertex.normal = NzVector3f::Normalize(m_matrix.Transform(position, 0.f));
|
|
vertex.position = m_matrix.Transform(m_size * position.GetNormal());
|
|
|
|
return m_vertexIndex++;
|
|
}
|
|
|
|
unsigned int GetMiddleVertex(unsigned int index1, unsigned int index2)
|
|
{
|
|
nzUInt64 key = (static_cast<nzUInt64>(std::min(index1, index2)) << 32) + static_cast<nzUInt32>(std::max(index1, index2));
|
|
auto it = m_cache.find(key);
|
|
if (it != m_cache.end())
|
|
return it->second;
|
|
|
|
NzVector3f middle = NzVector3f::Lerp(m_vertices[index1].position, m_vertices[index2].position, 0.5f);
|
|
|
|
unsigned int index = AddVertex(middle);
|
|
m_cache[key] = index;
|
|
|
|
return index;
|
|
}
|
|
|
|
private:
|
|
std::unordered_map<nzUInt64, unsigned int> m_cache;
|
|
const NzMatrix4f& m_matrix;
|
|
NzMeshVertex* m_vertices;
|
|
float m_size;
|
|
unsigned int m_vertexIndex;
|
|
};
|
|
|
|
// Source: https://code.google.com/p/vcacne/
|
|
// Auteur: Michael Georgoulpoulos
|
|
// Selon ce papier: http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
|
|
// Modifié pour les besoins du moteur
|
|
///TODO: Déplacer dans un fichier à part ?
|
|
struct VertexCacheData
|
|
{
|
|
int position_in_cache = -1;
|
|
float current_score = 0.f;
|
|
int total_valence = 0; // toatl number of triangles using this vertex
|
|
int remaining_valence = 0; // number of triangles using it but not yet rendered
|
|
std::vector<int> tri_indices; // indices to the indices that use this vertex
|
|
bool calculated; // was the score calculated during this iteration?
|
|
|
|
|
|
int FindTriangle(int tri)
|
|
{
|
|
for (unsigned int i = 0; i < tri_indices.size(); ++i)
|
|
if (tri_indices[i] == tri) return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
void MoveTriangleToEnd(int tri)
|
|
{
|
|
auto it = std::find(tri_indices.begin(), tri_indices.end(), tri);
|
|
int t_ind = (it != tri_indices.end()) ? std::distance(tri_indices.begin(), it) : -1;
|
|
|
|
NazaraAssert(t_ind >= 0, "Triangle not found");
|
|
|
|
tri_indices.erase(tri_indices.begin() + t_ind, tri_indices.begin() + t_ind + 1);
|
|
tri_indices.push_back(tri);
|
|
}
|
|
};
|
|
|
|
struct TriangleCacheData
|
|
{
|
|
bool rendered = false; // has the triangle been added to the draw list yet?
|
|
float current_score = 0.f; // sum of the score of its vertices
|
|
int verts[3] = {-1, -1, -1}; // indices to the triangle's vertices
|
|
bool calculated = false; // was the score calculated during this iteration?
|
|
};
|
|
|
|
class VertexCache
|
|
{
|
|
public:
|
|
VertexCache()
|
|
{
|
|
Clear();
|
|
}
|
|
|
|
VertexCache(NzIndexIterator indices, unsigned int indexCount)
|
|
{
|
|
Clear();
|
|
|
|
for (unsigned int i = 0; i < indexCount; ++i)
|
|
AddVertex(*indices++);
|
|
}
|
|
|
|
// the vertex will be placed on top
|
|
// if the vertex didn't exist previewsly in
|
|
// the cache, then miss count is incermented
|
|
void AddVertex(unsigned int v)
|
|
{
|
|
int w = FindVertex(v);
|
|
if (w >= 0)
|
|
// remove the vertex from the cache (to reinsert it later on the top)
|
|
RemoveVertex(w);
|
|
else
|
|
// the vertex was not found in the cache - increment misses
|
|
m_misses++;
|
|
|
|
// shift all vertices down (to make room for the new top vertex)
|
|
for (int i=39; i>0; i--)
|
|
m_cache[i] = m_cache[i-1];
|
|
|
|
// add the new vertex on top
|
|
m_cache[0] = v;
|
|
}
|
|
|
|
void Clear()
|
|
{
|
|
for (int i=0; i<40; i++)
|
|
m_cache[i] = -1;
|
|
|
|
m_misses = 0;
|
|
}
|
|
|
|
int GetMissCount()
|
|
{
|
|
return m_misses;
|
|
}
|
|
|
|
int GetVertex(int which)
|
|
{
|
|
return m_cache[which];
|
|
}
|
|
|
|
private:
|
|
int FindVertex(int v)
|
|
{
|
|
for (int i = 0; i < 32; ++i)
|
|
{
|
|
if (m_cache[i] == v)
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void RemoveVertex(int stack_index)
|
|
{
|
|
for (int i=stack_index; i<38; i++)
|
|
m_cache[i] = m_cache[i+1];
|
|
}
|
|
|
|
int m_cache[40];
|
|
int m_misses; // cache miss count
|
|
};
|
|
|
|
class VertexCacheOptimizer
|
|
{
|
|
public:
|
|
enum Result
|
|
{
|
|
Success,
|
|
Fail_BadIndex,
|
|
Fail_NoVerts
|
|
};
|
|
|
|
VertexCacheOptimizer()
|
|
{
|
|
// initialize constants
|
|
m_cacheDecayPower = 1.5f;
|
|
m_lastTriScore = 0.75f;
|
|
m_valenceBoostScale = 2.0f;
|
|
m_valenceBoostPower = 0.5f;
|
|
|
|
m_bestTri = 0;
|
|
}
|
|
|
|
// stores new indices in place
|
|
Result Optimize(NzIndexIterator indices, unsigned int indexCount)
|
|
{
|
|
if (indexCount == 0)
|
|
return Fail_NoVerts;
|
|
|
|
// find vertex count
|
|
int max_vert = *std::max_element(indices, indices + indexCount);
|
|
|
|
Result res = Init(indices, indexCount, max_vert + 1);
|
|
if (res != Success)
|
|
return res;
|
|
|
|
// iterate until Iterate returns false
|
|
while (Iterate());
|
|
|
|
// rewrite optimized index list
|
|
for (int index : m_drawList)
|
|
{
|
|
*indices++ = m_triangles[index].verts[0];
|
|
*indices++ = m_triangles[index].verts[1];
|
|
*indices++ = m_triangles[index].verts[2];
|
|
}
|
|
|
|
return Success;
|
|
}
|
|
|
|
private:
|
|
float CalculateVertexScore(unsigned int vertex)
|
|
{
|
|
VertexCacheData *v = &m_vertices[vertex];
|
|
if (v->remaining_valence <= 0)
|
|
// No tri needs this vertex!
|
|
return -1.0f;
|
|
|
|
float ret = 0.0f;
|
|
if (v->position_in_cache < 0)
|
|
{
|
|
// Vertex is not in FIFO cache - no score.
|
|
}
|
|
else
|
|
{
|
|
if (v->position_in_cache < 3)
|
|
{
|
|
// This vertex was used in the last triangle,
|
|
// so it has a fixed score, whichever of the three
|
|
// it's in. Otherwise, you can get very different
|
|
// answers depending on whether you add
|
|
// the triangle 1,2,3 or 3,1,2 - which is silly.
|
|
ret = m_lastTriScore;
|
|
}
|
|
else
|
|
{
|
|
// Points for being high in the cache.
|
|
const float Scaler = 1.0f / (32 - 3);
|
|
ret = 1.0f - (v->position_in_cache - 3) * Scaler;
|
|
ret = std::pow(ret, m_cacheDecayPower);
|
|
}
|
|
}
|
|
|
|
// Bonus points for having a low number of tris still to
|
|
// use the vert, so we get rid of lone verts quickly.
|
|
float valence_boost = std::pow(static_cast<float>(v->remaining_valence), -m_valenceBoostPower);
|
|
ret += m_valenceBoostScale * valence_boost;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// returns the index of the triangle with the highest score
|
|
// (or -1, if there aren't any active triangles)
|
|
int FullScoreRecalculation()
|
|
{
|
|
// calculate score for all vertices
|
|
for (unsigned int i = 0; i < m_vertices.size(); ++i)
|
|
m_vertices[i].current_score = CalculateVertexScore(i);
|
|
|
|
// calculate scores for all active triangles
|
|
float max_score;
|
|
int max_score_tri = -1;
|
|
bool first_time = true;
|
|
|
|
for (unsigned int i = 0; i < m_triangles.size(); ++i)
|
|
{
|
|
if (m_triangles[i].rendered)
|
|
continue;
|
|
|
|
// sum the score of all the triangle's vertices
|
|
float sc = m_vertices[m_triangles[i].verts[0]].current_score +
|
|
m_vertices[m_triangles[i].verts[1]].current_score +
|
|
m_vertices[m_triangles[i].verts[2]].current_score;
|
|
|
|
m_triangles[i].current_score = sc;
|
|
|
|
if (first_time || sc > max_score)
|
|
{
|
|
first_time = false;
|
|
max_score = sc;
|
|
max_score_tri = i;
|
|
}
|
|
}
|
|
|
|
return max_score_tri;
|
|
}
|
|
|
|
Result InitialPass()
|
|
{
|
|
for (unsigned int i = 0; i < m_indices.size(); ++i)
|
|
{
|
|
int index = m_indices[i];
|
|
if (index < 0 || index >= static_cast<int>(m_vertices.size()))
|
|
return Fail_BadIndex;
|
|
|
|
m_vertices[index].total_valence++;
|
|
m_vertices[index].remaining_valence++;
|
|
|
|
m_vertices[index].tri_indices.push_back(i/3);
|
|
}
|
|
|
|
m_bestTri = FullScoreRecalculation();
|
|
|
|
return Success;
|
|
}
|
|
|
|
Result Init(NzIndexIterator indices, unsigned int indexCount, int vertex_count)
|
|
{
|
|
// clear the draw list
|
|
m_drawList.clear();
|
|
|
|
// allocate and initialize vertices and triangles
|
|
m_vertices.clear(); // Pour reconstruire tous les éléments
|
|
m_vertices.resize(vertex_count);
|
|
|
|
m_triangles.clear();
|
|
for (unsigned int i = 0; i < indexCount; i += 3)
|
|
{
|
|
TriangleCacheData dat;
|
|
for (unsigned int j = 0; j < 3; ++j)
|
|
dat.verts[j] = indices[i + j];
|
|
|
|
m_triangles.push_back(dat);
|
|
}
|
|
|
|
// copy the indices
|
|
m_indices.resize(indexCount);
|
|
for (unsigned int i = 0; i < indexCount; ++i)
|
|
m_indices[i] = indices[i];
|
|
|
|
m_vertexCache.Clear();
|
|
m_bestTri = -1;
|
|
|
|
return InitialPass();
|
|
}
|
|
|
|
void AddTriangleToDrawList(int tri)
|
|
{
|
|
// reset all cache positions
|
|
for (unsigned int i = 0; i < 32; ++i)
|
|
{
|
|
int ind = m_vertexCache.GetVertex(i);
|
|
if (ind < 0)
|
|
continue;
|
|
|
|
m_vertices[ind].position_in_cache = -1;
|
|
}
|
|
|
|
TriangleCacheData* t = &m_triangles[tri];
|
|
if (t->rendered)
|
|
return; // triangle is already in the draw list
|
|
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
// add all triangle vertices to the cache
|
|
m_vertexCache.AddVertex(t->verts[i]);
|
|
|
|
VertexCacheData *v = &m_vertices[t->verts[i]];
|
|
|
|
// decrease remaining velence
|
|
v->remaining_valence--;
|
|
|
|
// move the added triangle to the end of the vertex's
|
|
// triangle index list, so that the first 'remaining_valence'
|
|
// triangles in the list are the active ones
|
|
v->MoveTriangleToEnd(tri);
|
|
}
|
|
|
|
m_drawList.push_back(tri);
|
|
|
|
t->rendered = true;
|
|
|
|
// update all vertex cache positions
|
|
for (unsigned int i = 0; i < 32; ++i)
|
|
{
|
|
int ind = m_vertexCache.GetVertex(i);
|
|
if (ind < 0)
|
|
continue;
|
|
|
|
m_vertices[ind].position_in_cache = i;
|
|
}
|
|
}
|
|
|
|
// Optimization: to avoid duplicate calculations durind the same iteration,
|
|
// both vertices and triangles have a 'calculated' flag. This flag
|
|
// must be cleared at the beginning of the iteration to all *active* triangles
|
|
// that have one or more of their vertices currently cached, and all their
|
|
// other vertices.
|
|
// If there aren't any active triangles in the cache, the function returns
|
|
// false and full recalculation is performed.
|
|
bool CleanCalculationFlags()
|
|
{
|
|
bool ret = false;
|
|
for (unsigned int i = 0; i < 32; ++i)
|
|
{
|
|
int vert = m_vertexCache.GetVertex(i);
|
|
if (vert < 0)
|
|
continue;
|
|
|
|
VertexCacheData *v = &m_vertices[vert];
|
|
|
|
for (int j = 0; j < v->remaining_valence; j++)
|
|
{
|
|
TriangleCacheData *t = &m_triangles[v->tri_indices[j]];
|
|
|
|
// we actually found a triangle to process
|
|
ret = true;
|
|
|
|
// clear triangle flag
|
|
t->calculated = false;
|
|
|
|
// clear vertex flags
|
|
for (unsigned int k = 0; k < 3; ++k)
|
|
m_vertices[t->verts[k]].calculated = false;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void TriangleScoreRecalculation(int tri)
|
|
{
|
|
TriangleCacheData* t = &m_triangles[tri];
|
|
|
|
// calculate vertex scores
|
|
float sum = 0.0f;
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
VertexCacheData *v = &m_vertices[t->verts[i]];
|
|
float sc = v->current_score;
|
|
if (!v->calculated)
|
|
{
|
|
sc = CalculateVertexScore(t->verts[i]);
|
|
}
|
|
v->current_score = sc;
|
|
v->calculated = true;
|
|
sum += sc;
|
|
}
|
|
|
|
t->current_score = sum;
|
|
t->calculated = true;
|
|
}
|
|
|
|
int PartialScoreRecalculation()
|
|
{
|
|
// iterate through all the vertices of the cache
|
|
bool first_time = true;
|
|
float max_score;
|
|
int max_score_tri = -1;
|
|
|
|
for (unsigned int i = 0; i < 32; ++i)
|
|
{
|
|
int vert = m_vertexCache.GetVertex(i);
|
|
if (vert < 0)
|
|
continue;
|
|
|
|
VertexCacheData *v = &m_vertices[vert];
|
|
|
|
// iterate through all *active* triangles of this vertex
|
|
for (int j=0; j<v->remaining_valence; j++)
|
|
{
|
|
int tri = v->tri_indices[j];
|
|
TriangleCacheData *t = &m_triangles[tri];
|
|
if (!t->calculated)
|
|
// calculate triangle score
|
|
TriangleScoreRecalculation(tri);
|
|
|
|
float sc = t->current_score;
|
|
|
|
// we actually found a triangle to process
|
|
if (first_time || sc > max_score)
|
|
{
|
|
first_time = false;
|
|
max_score = sc;
|
|
max_score_tri = tri;
|
|
}
|
|
}
|
|
}
|
|
|
|
return max_score_tri;
|
|
}
|
|
|
|
// returns true while there are more steps to take
|
|
// false when optimization is complete
|
|
bool Iterate()
|
|
{
|
|
if (m_drawList.size() == m_triangles.size())
|
|
return false;
|
|
|
|
// add the selected triangle to the draw list
|
|
AddTriangleToDrawList(m_bestTri);
|
|
|
|
// recalculate vertex and triangle scores and
|
|
// select the best triangle for the next iteration
|
|
m_bestTri = (CleanCalculationFlags()) ? PartialScoreRecalculation() : FullScoreRecalculation();
|
|
|
|
return true;
|
|
}
|
|
|
|
std::vector<VertexCacheData> m_vertices;
|
|
std::vector<TriangleCacheData> m_triangles;
|
|
std::vector<int> m_indices;
|
|
int m_bestTri; // the next triangle to add to the render list
|
|
VertexCache m_vertexCache;
|
|
std::vector<int> m_drawList;
|
|
|
|
// CalculateVertexScore constants
|
|
float m_cacheDecayPower;
|
|
float m_lastTriScore;
|
|
float m_valenceBoostScale;
|
|
float m_valenceBoostPower;
|
|
};
|
|
}
|
|
|
|
/**********************************NzCompute**********************************/
|
|
|
|
void NzComputeBoxIndexVertexCount(const NzVector3ui& subdivision, unsigned int* indexCount, unsigned int* vertexCount)
|
|
{
|
|
unsigned int xIndexCount, yIndexCount, zIndexCount;
|
|
unsigned int xVertexCount, yVertexCount, zVertexCount;
|
|
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.y, subdivision.z), &xIndexCount, &xVertexCount);
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.z), &yIndexCount, &yVertexCount);
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.y), &zIndexCount, &zVertexCount);
|
|
|
|
if (indexCount)
|
|
*indexCount = xIndexCount*2 + yIndexCount*2 + zIndexCount*2;
|
|
|
|
if (vertexCount)
|
|
*vertexCount = xVertexCount*2 + yVertexCount*2 + zVertexCount*2;
|
|
}
|
|
|
|
unsigned int NzComputeCacheMissCount(NzIndexIterator indices, unsigned int indexCount)
|
|
{
|
|
VertexCache cache(indices, indexCount);
|
|
return cache.GetMissCount();
|
|
}
|
|
|
|
void NzComputeCubicSphereIndexVertexCount(unsigned int subdivision, unsigned int* indexCount, unsigned int* vertexCount)
|
|
{
|
|
// Comme tous nos plans sont identiques, on peut optimiser un peu
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision), indexCount, vertexCount);
|
|
|
|
if (indexCount)
|
|
*indexCount *= 6;
|
|
|
|
if (vertexCount)
|
|
*vertexCount *= 6;
|
|
}
|
|
|
|
void NzComputeIcoSphereIndexVertexCount(unsigned int recursionLevel, unsigned int* indexCount, unsigned int* vertexCount)
|
|
{
|
|
if (indexCount)
|
|
*indexCount = 3 * 20 * NzIntegralPow(4, recursionLevel);
|
|
|
|
if (vertexCount)
|
|
*vertexCount = NzIntegralPow(4, recursionLevel)*10 + 2;
|
|
}
|
|
|
|
void NzComputePlaneIndexVertexCount(const NzVector2ui& subdivision, unsigned int* indexCount, unsigned int* vertexCount)
|
|
{
|
|
// Le nombre de faces appartenant à un axe est équivalent à 2 exposant la subdivision (1,2,4,8,16,32,...)
|
|
unsigned int horizontalFaceCount = (1 << subdivision.x);
|
|
unsigned int verticalFaceCount = (1 << subdivision.y);
|
|
|
|
// Et le nombre de sommets est ce nombre ajouté de 1 (2,3,5,9,17,33,...)
|
|
unsigned int horizontalVertexCount = horizontalFaceCount + 1;
|
|
unsigned int verticalVertexCount = verticalFaceCount + 1;
|
|
|
|
if (indexCount)
|
|
*indexCount = horizontalFaceCount*verticalFaceCount*6; // Six indices sont nécessaires pour décrire une face (deux triangles)
|
|
|
|
if (vertexCount)
|
|
*vertexCount = horizontalVertexCount*verticalVertexCount;
|
|
}
|
|
|
|
void NzComputeUvSphereIndexVertexCount(unsigned int sliceCount, unsigned int stackCount, unsigned int* indexCount, unsigned int* vertexCount)
|
|
{
|
|
if (indexCount)
|
|
*indexCount = (sliceCount-1) * (stackCount-1) * 6;
|
|
|
|
if (vertexCount)
|
|
*vertexCount = sliceCount * stackCount;
|
|
}
|
|
|
|
/**********************************NzGenerate*********************************/
|
|
|
|
void NzGenerateBox(const NzVector3f& lengths, const NzVector3ui& subdivision, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset)
|
|
{
|
|
unsigned int xIndexCount, yIndexCount, zIndexCount;
|
|
unsigned int xVertexCount, yVertexCount, zVertexCount;
|
|
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.y, subdivision.z), &xIndexCount, &xVertexCount);
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.z), &yIndexCount, &yVertexCount);
|
|
NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.y), &zIndexCount, &zVertexCount);
|
|
|
|
NzMeshVertex* oldVertices = vertices;
|
|
NzMatrix4f transform;
|
|
NzVector3f halfLengths = lengths/2.f;
|
|
|
|
// Face +X
|
|
transform.MakeTransform(NzVector3f::UnitX() * halfLengths.x, NzEulerAnglesf(-90.f, 0.f, -90.f));
|
|
NzGeneratePlane(NzVector2ui(subdivision.z, subdivision.y), NzVector2f(lengths.z, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset);
|
|
indexOffset += xVertexCount;
|
|
indices += xIndexCount;
|
|
vertices += xVertexCount;
|
|
|
|
// Face +Y
|
|
transform.MakeTransform(NzVector3f::UnitY() * halfLengths.y, NzEulerAnglesf(0.f, 0.f, 0.f));
|
|
NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.z), NzVector2f(lengths.x, lengths.z), transform, textureCoords, vertices, indices, nullptr, indexOffset);
|
|
indexOffset += yVertexCount;
|
|
indices += yIndexCount;
|
|
vertices += yVertexCount;
|
|
|
|
// Face +Z
|
|
transform.MakeTransform(NzVector3f::UnitZ() * halfLengths.z, NzEulerAnglesf(-90.f, 90.f, 90.f));
|
|
NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.y), NzVector2f(lengths.x, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset);
|
|
indexOffset += zVertexCount;
|
|
indices += zIndexCount;
|
|
vertices += zVertexCount;
|
|
|
|
// Face -X
|
|
transform.MakeTransform(-NzVector3f::UnitX() * halfLengths.x, NzEulerAnglesf(-90.f, 0.f, 90.f));
|
|
NzGeneratePlane(NzVector2ui(subdivision.z, subdivision.y), NzVector2f(lengths.z, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset);
|
|
indexOffset += xVertexCount;
|
|
indices += xIndexCount;
|
|
vertices += xVertexCount;
|
|
|
|
// Face -Y
|
|
transform.MakeTransform(-NzVector3f::UnitY() * halfLengths.y, NzEulerAnglesf(0.f, 0.f, 180.f));
|
|
NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.z), NzVector2f(lengths.x, lengths.z), transform, textureCoords, vertices, indices, nullptr, indexOffset);
|
|
indexOffset += yVertexCount;
|
|
indices += yIndexCount;
|
|
vertices += yVertexCount;
|
|
|
|
// Face -Z
|
|
transform.MakeTransform(-NzVector3f::UnitZ() * halfLengths.z, NzEulerAnglesf(-90.f, -90.f, 90.f));
|
|
NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.y), NzVector2f(lengths.x, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset);
|
|
indexOffset += zVertexCount;
|
|
indices += zIndexCount;
|
|
vertices += zVertexCount;
|
|
|
|
NzTransformVertices(oldVertices, vertices-oldVertices, matrix);
|
|
|
|
if (aabb)
|
|
{
|
|
aabb->Set(-halfLengths, halfLengths);
|
|
aabb->Transform(matrix, 0.f);
|
|
}
|
|
}
|
|
|
|
void NzGenerateCubicSphere(float size, unsigned int subdivision, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset)
|
|
{
|
|
unsigned int vertexCount;
|
|
NzComputeBoxIndexVertexCount(NzVector3ui(subdivision), nullptr, &vertexCount);
|
|
|
|
// On envoie une matrice identité de sorte à ce que la boîte ne subisse aucune transformation (rendant plus facile l'étape suivante)
|
|
NzGenerateBox(NzVector3f(size, size, size), NzVector3ui(subdivision), NzMatrix4f::Identity(), textureCoords, vertices, indices, nullptr, indexOffset);
|
|
|
|
if (aabb)
|
|
{
|
|
NzVector3f totalSize = size * matrix.GetScale();
|
|
aabb->Set(-totalSize, totalSize);
|
|
}
|
|
|
|
for (unsigned int i = 0; i < vertexCount; ++i)
|
|
{
|
|
vertices->normal = vertices->position.GetNormal();
|
|
vertices->position = matrix.Transform(size * vertices->normal);
|
|
//vertices->tangent = ???
|
|
vertices++;
|
|
}
|
|
}
|
|
|
|
void NzGenerateIcoSphere(float size, unsigned int recursionLevel, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset)
|
|
{
|
|
IcoSphereBuilder builder(matrix);
|
|
builder.Generate(size, recursionLevel, textureCoords, vertices, indices, aabb, indexOffset);
|
|
}
|
|
|
|
void NzGeneratePlane(const NzVector2ui& subdivision, const NzVector2f& size, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset)
|
|
{
|
|
// Pour plus de facilité, on va construire notre plan en considérant que la normale est de 0,1,0
|
|
// Et appliquer ensuite une matrice "finissant le travail"
|
|
|
|
// Le nombre de faces appartenant à un axe est équivalent à 2 exposant la subdivision (1,2,4,8,16,32,...)
|
|
unsigned int horizontalFaceCount = (1 << subdivision.x);
|
|
unsigned int verticalFaceCount = (1 << subdivision.y);
|
|
|
|
// Et le nombre de sommets est ce nombre ajouté de 1 (2,3,5,9,17,33,...)
|
|
unsigned int horizontalVertexCount = horizontalFaceCount + 1;
|
|
unsigned int verticalVertexCount = verticalFaceCount + 1;
|
|
|
|
NzVector3f normal(NzVector3f::UnitY());
|
|
normal = matrix.Transform(normal, 0.f);
|
|
normal.Normalize();
|
|
|
|
NzVector3f tangent(1.f, 1.f, 0.f);
|
|
tangent = matrix.Transform(tangent, 0.f);
|
|
tangent.Normalize();
|
|
|
|
float halfSizeX = size.x / 2.f;
|
|
float halfSizeY = size.y / 2.f;
|
|
|
|
float invHorizontalVertexCount = 1.f/(horizontalVertexCount-1);
|
|
float invVerticalVertexCount = 1.f/(verticalVertexCount-1);
|
|
for (unsigned int x = 0; x < horizontalVertexCount; ++x)
|
|
{
|
|
for (unsigned int y = 0; y < verticalVertexCount; ++y)
|
|
{
|
|
NzVector3f localPos((2.f*x*invHorizontalVertexCount - 1.f) * halfSizeX, 0.f, (2.f*y*invVerticalVertexCount - 1.f) * halfSizeY);
|
|
vertices->position = matrix * localPos;
|
|
vertices->uv.Set(textureCoords.x + x*invHorizontalVertexCount*textureCoords.width, textureCoords.y + y*invVerticalVertexCount*textureCoords.height);
|
|
vertices->normal = normal;
|
|
vertices->tangent = tangent;
|
|
vertices++;
|
|
|
|
if (x != horizontalVertexCount-1 && y != verticalVertexCount-1)
|
|
{
|
|
*indices++ = (x+0)*verticalVertexCount + y + 0 + indexOffset;
|
|
*indices++ = (x+0)*verticalVertexCount + y + 1 + indexOffset;
|
|
*indices++ = (x+1)*verticalVertexCount + y + 0 + indexOffset;
|
|
|
|
*indices++ = (x+1)*verticalVertexCount + y + 0 + indexOffset;
|
|
*indices++ = (x+0)*verticalVertexCount + y + 1 + indexOffset;
|
|
*indices++ = (x+1)*verticalVertexCount + y + 1 + indexOffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (aabb)
|
|
aabb->Set(matrix.Transform(NzVector3f(-halfSizeX, 0.f, -halfSizeY), 0.f), matrix.Transform(NzVector3f(halfSizeX, 0.f, halfSizeY), 0.f));
|
|
}
|
|
|
|
void NzGenerateUvSphere(float size, unsigned int sliceCount, unsigned int stackCount, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset)
|
|
{
|
|
// http://stackoverflow.com/questions/14080932/implementing-opengl-sphere-example-code
|
|
float invSliceCount = 1.f / (sliceCount-1);
|
|
float invStackCount = 1.f / (stackCount-1);
|
|
|
|
const float pi = static_cast<float>(M_PI); // Pour éviter toute promotion en double
|
|
const float pi2 = pi * 2.f;
|
|
const float pi_2 = pi / 2.f;
|
|
|
|
for (unsigned int stack = 0; stack < stackCount; ++stack)
|
|
{
|
|
float stackVal = stack * invStackCount;
|
|
float stackValPi = stackVal * pi;
|
|
float sinStackValPi = std::sin(stackValPi);
|
|
|
|
for (unsigned int slice = 0; slice < sliceCount; ++slice)
|
|
{
|
|
float sliceVal = slice * invSliceCount;
|
|
float sliceValPi2 = sliceVal * pi2;
|
|
|
|
NzVector3f normal;
|
|
normal.y = std::sin(-pi_2 + stackValPi);
|
|
normal.x = std::cos(sliceValPi2) * sinStackValPi;
|
|
normal.z = std::sin(sliceValPi2) * sinStackValPi;
|
|
|
|
vertices->position = matrix.Transform(size * normal);
|
|
vertices->normal = matrix.Transform(normal, 0.f);
|
|
vertices->uv.Set(textureCoords.x + textureCoords.width*(1.f - sliceVal), textureCoords.y + textureCoords.height*stackVal);
|
|
vertices++;
|
|
|
|
if (stack != stackCount-1 && slice != sliceCount-1)
|
|
{
|
|
*indices++ = (stack+0)*sliceCount + (slice+0) + indexOffset;
|
|
*indices++ = (stack+1)*sliceCount + (slice+0) + indexOffset;
|
|
*indices++ = (stack+0)*sliceCount + (slice+1) + indexOffset;
|
|
|
|
*indices++ = (stack+0)*sliceCount + (slice+1) + indexOffset;
|
|
*indices++ = (stack+1)*sliceCount + (slice+0) + indexOffset;
|
|
*indices++ = (stack+1)*sliceCount + (slice+1) + indexOffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (aabb)
|
|
{
|
|
NzVector3f totalSize = size * matrix.GetScale();
|
|
aabb->Set(-totalSize, totalSize);
|
|
}
|
|
}
|
|
|
|
/************************************Autres***********************************/
|
|
|
|
void NzOptimizeIndices(NzIndexIterator indices, unsigned int indexCount)
|
|
{
|
|
VertexCacheOptimizer optimizer;
|
|
if (optimizer.Optimize(indices, indexCount) != VertexCacheOptimizer::Success)
|
|
NazaraWarning("Indices optimizer failed");
|
|
}
|