NazaraEngine/src/Nazara/Graphics/DeferredGeometryPass.cpp

307 lines
9.7 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/DeferredGeometryPass.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/DeferredRenderTechnique.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/RenderTexture.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/VertexStruct.hpp>
#include <memory>
#include <Nazara/Graphics/Debug.hpp>
namespace Nz
{
/*!
* \ingroup graphics
* \class Nz::DeferredGeometryPass
* \brief Graphics class that represents the pass for geometries in deferred rendering
*/
/*!
* \brief Constructs a DeferredGeometryPass object by default
*/
DeferredGeometryPass::DeferredGeometryPass()
{
m_clearShader = ShaderLibrary::Get("DeferredGBufferClear");
m_clearStates.parameters[RendererParameter_DepthBuffer] = true;
m_clearStates.parameters[RendererParameter_FaceCulling] = true;
m_clearStates.parameters[RendererParameter_StencilTest] = true;
m_clearStates.depthFunc = RendererComparison_Always;
m_clearStates.frontFace.stencilCompare = RendererComparison_Always;
m_clearStates.frontFace.stencilPass = StencilOperation_Zero;
}
DeferredGeometryPass::~DeferredGeometryPass() = default;
/*!
* \brief Processes the work on the data while working with textures
* \return false
*
* \param sceneData Data for the scene
* \param firstWorkTexture Index of the first texture to work with
* \param firstWorkTexture Index of the second texture to work with
*/
bool DeferredGeometryPass::Process(const SceneData& sceneData, unsigned int firstWorkTexture, unsigned int secondWorkTexture) const
{
NazaraAssert(sceneData.viewer, "Invalid viewer");
NazaraUnused(firstWorkTexture);
NazaraUnused(secondWorkTexture);
bool instancingEnabled = m_deferredTechnique->IsInstancingEnabled();
m_GBufferRTT->SetColorTargets({0, 1, 2}); // G-Buffer
Renderer::SetTarget(m_GBufferRTT);
Renderer::SetViewport(Recti(0, 0, m_dimensions.x, m_dimensions.y));
Renderer::SetRenderStates(m_clearStates);
Renderer::SetShader(m_clearShader);
Renderer::DrawFullscreenQuad();
Renderer::SetMatrix(MatrixType_Projection, sceneData.viewer->GetProjectionMatrix());
Renderer::SetMatrix(MatrixType_View, sceneData.viewer->GetViewMatrix());
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
for (auto& pair : m_renderQueue->layers)
{
DeferredRenderQueue::Layer& layer = pair.second;
for (auto& matIt : layer.opaqueModels)
{
auto& matEntry = matIt.second;
if (matEntry.enabled)
{
DeferredRenderQueue::MeshInstanceContainer& meshInstances = matEntry.meshMap;
if (!meshInstances.empty())
{
const Material* material = matIt.first;
bool useInstancing = instancingEnabled && matEntry.instancingEnabled;
// We begin by getting the program for materials
UInt32 flags = ShaderFlags_Deferred;
if (useInstancing)
flags |= ShaderFlags_Instancing;
const Shader* shader = material->Apply(flags);
// The uniforms are conserved in our program, there's no point to send them back if they don't change
if (shader != lastShader)
{
// Index of uniforms in the shader
shaderUniforms = GetShaderUniforms(shader);
// Ambient color for the scene
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position of the camera
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
lastShader = shader;
}
// Meshes
for (auto& meshIt : meshInstances)
{
const MeshData& meshData = meshIt.first;
auto& meshEntry = meshIt.second;
std::vector<Matrix4f>& instances = meshEntry.instances;
if (!instances.empty())
{
const IndexBuffer* indexBuffer = meshData.indexBuffer;
const VertexBuffer* vertexBuffer = meshData.vertexBuffer;
// Handle draw call before rendering loop
Renderer::DrawCall drawFunc;
Renderer::DrawCallInstanced instancedDrawFunc;
unsigned int indexCount;
if (indexBuffer)
{
drawFunc = Renderer::DrawIndexedPrimitives;
instancedDrawFunc = Renderer::DrawIndexedPrimitivesInstanced;
indexCount = indexBuffer->GetIndexCount();
}
else
{
drawFunc = Renderer::DrawPrimitives;
instancedDrawFunc = Renderer::DrawPrimitivesInstanced;
indexCount = vertexBuffer->GetVertexCount();
}
Renderer::SetIndexBuffer(indexBuffer);
Renderer::SetVertexBuffer(vertexBuffer);
if (useInstancing)
{
// We get the buffer for instance of Renderer and we configure it to work with matrices
VertexBuffer* instanceBuffer = Renderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(VertexDeclaration::Get(VertexLayout_Matrix4));
const Matrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // The number of matrices that can be hold in the buffer
while (instanceCount > 0)
{
// We compute the number of instances that we will be able to show this time (Depending on the instance buffer size)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// We fill the instancing buffer with our world matrices
instanceBuffer->Fill(instanceMatrices, 0, renderedInstanceCount, true);
instanceMatrices += renderedInstanceCount;
// And we show
instancedDrawFunc(renderedInstanceCount, meshData.primitiveMode, 0, indexCount);
}
}
else
{
// Without instancing, we must do one draw call for each instance
// This may be faster than instancing under a threshold
// Due to the time to modify the instancing buffer
for (const Matrix4f& matrix : instances)
{
Renderer::SetMatrix(MatrixType_World, matrix);
drawFunc(meshData.primitiveMode, 0, indexCount);
}
}
instances.clear();
}
}
}
// Abd we set it back data to zero
matEntry.enabled = false;
matEntry.instancingEnabled = false;
}
}
}
return false; // We only fill the G-Buffer, the work texture are unchanged
}
/*!
* \brief Resizes the texture sizes
* \return true If successful
*
* \param dimensions Dimensions for the compute texture
*/
bool DeferredGeometryPass::Resize(const Vector2ui& dimensions)
{
DeferredRenderPass::Resize(dimensions);
/*
G-Buffer:
Texture0: Diffuse Color + Flags
Texture1: Encoded normal
Texture2: Specular value + Shininess
Texture3: N/A
*/
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
unsigned int width = dimensions.x;
unsigned int height = dimensions.y;
m_depthStencilBuffer->Create(PixelFormatType_Depth24Stencil8, width, height);
m_GBuffer[0]->Create(ImageType_2D, PixelFormatType_RGBA8, width, height); // Texture 0 : Diffuse Color + Specular
m_GBuffer[1]->Create(ImageType_2D, PixelFormatType_RG16F, width, height); // Texture 1 : Encoded normal
m_GBuffer[2]->Create(ImageType_2D, PixelFormatType_RGBA8, width, height); // Texture 2 : Depth (24bits) + Shininess
m_GBufferRTT->Create(true);
m_GBufferRTT->AttachTexture(AttachmentPoint_Color, 0, m_GBuffer[0]);
m_GBufferRTT->AttachTexture(AttachmentPoint_Color, 1, m_GBuffer[1]);
m_GBufferRTT->AttachTexture(AttachmentPoint_Color, 2, m_GBuffer[2]);
// Texture 3 : Emission map ?
m_GBufferRTT->AttachBuffer(AttachmentPoint_DepthStencil, 0, m_depthStencilBuffer);
m_GBufferRTT->Unlock();
m_workRTT->Create(true);
for (unsigned int i = 0; i < 2; ++i)
{
m_workTextures[i]->Create(ImageType_2D, PixelFormatType_RGBA8, width, height);
m_workRTT->AttachTexture(AttachmentPoint_Color, i, m_workTextures[i]);
}
m_workRTT->AttachBuffer(AttachmentPoint_DepthStencil, 0, m_depthStencilBuffer);
m_workRTT->Unlock();
if (!m_workRTT->IsComplete() || !m_GBufferRTT->IsComplete())
{
NazaraError("Incomplete RTT");
return false;
}
return true;
}
catch (const std::exception& e)
{
NazaraError("Failed to create G-Buffer RTT: " + String(e.what()));
return false;
}
}
/*!
* \brief Gets the uniforms of a shader
* \return Uniforms of the shader
*
* \param shader Shader to get uniforms from
*/
const DeferredGeometryPass::ShaderUniforms* DeferredGeometryPass::GetShaderUniforms(const Shader* shader) const
{
auto it = m_shaderUniforms.find(shader);
if (it == m_shaderUniforms.end())
{
ShaderUniforms uniforms;
uniforms.shaderReleaseSlot.Connect(shader->OnShaderRelease, this, &DeferredGeometryPass::OnShaderInvalidated);
uniforms.shaderUniformInvalidatedSlot.Connect(shader->OnShaderUniformInvalidated, this, &DeferredGeometryPass::OnShaderInvalidated);
uniforms.eyePosition = shader->GetUniformLocation("EyePosition");
uniforms.sceneAmbient = shader->GetUniformLocation("SceneAmbient");
uniforms.textureOverlay = shader->GetUniformLocation("TextureOverlay");
it = m_shaderUniforms.emplace(shader, std::move(uniforms)).first;
}
return &it->second;
}
/*!
* \brief Handle the invalidation of a shader
*
* \param shader Shader being invalidated
*/
void DeferredGeometryPass::OnShaderInvalidated(const Shader* shader) const
{
m_shaderUniforms.erase(shader);
}
}