NazaraEngine/src/Nazara/Graphics/ForwardRenderQueue.cpp

399 lines
11 KiB
C++

// Copyright (C) 2014 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/ForwardRenderQueue.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Graphics/Debug.hpp>
///FIXME: Régler ce problème de dépendance aux ressources
namespace
{
enum ResourceType
{
ResourceType_IndexBuffer,
ResourceType_Material,
ResourceType_Texture,
ResourceType_VertexBuffer
};
}
NzForwardRenderQueue::~NzForwardRenderQueue()
{
Clear(true);
}
void NzForwardRenderQueue::AddDrawable(const NzDrawable* drawable)
{
#if NAZARA_GRAPHICS_SAFE
if (!drawable)
{
NazaraError("Invalid drawable");
return;
}
#endif
otherDrawables.push_back(drawable);
}
void NzForwardRenderQueue::AddLight(const NzLight* light)
{
#if NAZARA_GRAPHICS_SAFE
if (!light)
{
NazaraError("Invalid light");
return;
}
#endif
switch (light->GetLightType())
{
case nzLightType_Directional:
directionalLights.push_back(light);
break;
case nzLightType_Point:
case nzLightType_Spot:
lights.push_back(light);
break;
#ifdef NAZARA_DEBUG
default:
NazaraError("Light type not handled (0x" + NzString::Number(light->GetLightType(), 16) + ')');
#endif
}
}
void NzForwardRenderQueue::AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix)
{
if (material->IsEnabled(nzRendererParameter_Blend))
{
unsigned int index = transparentModelData.size();
transparentModelData.resize(index+1);
TransparentModelData& data = transparentModelData.back();
data.boundingSphere = NzSpheref(transformMatrix.GetTranslation() + meshAABB.GetCenter(), meshAABB.GetSquaredRadius());
data.material = material;
data.meshData = meshData;
data.transformMatrix = transformMatrix;
transparentModels.push_back(index);
}
else
{
ModelBatches::iterator it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
it = opaqueModels.insert(std::make_pair(material, ModelBatches::mapped_type())).first;
material->AddResourceListener(this, ResourceType_Material);
}
bool& used = std::get<0>(it->second);
bool& enableInstancing = std::get<1>(it->second);
MeshInstanceContainer& meshMap = std::get<2>(it->second);
used = true;
MeshInstanceContainer::iterator it2 = meshMap.find(meshData);
if (it2 == meshMap.end())
{
it2 = meshMap.insert(std::make_pair(meshData, MeshInstanceContainer::mapped_type())).first;
NzSpheref& squaredBoundingSphere = it2->second.first;
squaredBoundingSphere.Set(meshAABB.GetSquaredBoundingSphere());
if (meshData.indexBuffer)
meshData.indexBuffer->AddResourceListener(this, ResourceType_IndexBuffer);
meshData.vertexBuffer->AddResourceListener(this, ResourceType_VertexBuffer);
}
std::vector<NzMatrix4f>& instances = it2->second.second;
instances.push_back(transformMatrix);
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instances.size() >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
}
}
void NzForwardRenderQueue::AddSprites(const NzMaterial* material, const NzVertexStruct_XYZ_Color_UV* vertices, unsigned int spriteCount, const NzTexture* overlay)
{
auto matIt = basicSprites.find(material);
if (matIt == basicSprites.end())
{
matIt = basicSprites.insert(std::make_pair(material, BasicSpriteBatches::mapped_type())).first;
material->AddResourceListener(this, ResourceType_Material);
}
auto& overlayMap = matIt->second;
auto overlayIt = overlayMap.find(overlay);
if (overlayIt == overlayMap.end())
{
overlayIt = overlayMap.insert(std::make_pair(overlay, BasicSpriteOverlayContainer::mapped_type())).first;
if (overlay)
overlay->AddResourceListener(this, ResourceType_Texture);
}
auto& spriteVector = overlayIt->second;
spriteVector.push_back(SpriteChain_XYZ_Color_UV({vertices, spriteCount}));
}
void NzForwardRenderQueue::Clear(bool fully)
{
directionalLights.clear();
lights.clear();
otherDrawables.clear();
transparentModels.clear();
transparentModelData.clear();
if (fully)
{
for (auto& matPair : basicSprites)
{
const NzMaterial* material = matPair.first;
material->RemoveResourceListener(this);
auto& overlayMap = matPair.second;
for (auto& overlayPair : overlayMap)
{
const NzTexture* overlay = overlayPair.first;
if (overlay)
overlay->RemoveResourceListener(this);
}
}
basicSprites.clear();
for (auto& matPair : opaqueModels)
{
const NzMaterial* material = matPair.first;
material->RemoveResourceListener(this);
MeshInstanceContainer& instances = std::get<2>(matPair.second);
for (auto& instanceIt : instances)
{
const NzMeshData& renderData = instanceIt.first;
if (renderData.indexBuffer)
renderData.indexBuffer->RemoveResourceListener(this);
renderData.vertexBuffer->RemoveResourceListener(this);
}
}
opaqueModels.clear();
}
}
void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer)
{
NzPlanef nearPlane = viewer->GetFrustum().GetPlane(nzFrustumPlane_Near);
NzVector3f viewerNormal = viewer->GetForward();
std::sort(transparentModels.begin(), transparentModels.end(), [this, &nearPlane, &viewerNormal](unsigned int index1, unsigned int index2)
{
const NzSpheref& sphere1 = transparentModelData[index1].boundingSphere;
const NzSpheref& sphere2 = transparentModelData[index2].boundingSphere;
NzVector3f position1 = sphere1.GetNegativeVertex(viewerNormal);
NzVector3f position2 = sphere2.GetNegativeVertex(viewerNormal);
return nearPlane.Distance(position1) > nearPlane.Distance(position2);
});
}
bool NzForwardRenderQueue::OnResourceDestroy(const NzResource* resource, int index)
{
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
basicSprites.erase(static_cast<const NzMaterial*>(resource));
opaqueModels.erase(static_cast<const NzMaterial*>(resource));
break;
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
return false; // Nous ne voulons plus recevoir d'évènement de cette ressource
}
void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int index)
{
// La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche
// des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources)
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
for (auto it = basicSprites.begin(); it != basicSprites.end(); ++it)
{
if (it->first == resource)
{
basicSprites.erase(it);
break;
}
}
for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it)
{
if (it->first == resource)
{
opaqueModels.erase(it);
break;
}
}
break;
}
case ResourceType_Texture:
{
for (auto matIt = basicSprites.begin(); matIt != basicSprites.end(); ++matIt)
{
auto& overlayMap = matIt->second;
for (auto overlayIt = overlayMap.begin(); overlayIt != overlayMap.end(); ++overlayIt)
{
if (overlayIt->first == resource)
{
overlayMap.erase(overlayIt);
break;
}
}
}
break;
}
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = std::get<2>(modelPair.second);
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
}
bool NzForwardRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance()->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance()->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance()->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance()->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzForwardRenderQueue::MeshDataComparator::operator()(const NzMeshData& data1, const NzMeshData& data2)
{
const NzBuffer* buffer1;
const NzBuffer* buffer2;
buffer1 = (data1.indexBuffer) ? data1.indexBuffer->GetBuffer() : nullptr;
buffer2 = (data2.indexBuffer) ? data2.indexBuffer->GetBuffer() : nullptr;
if (buffer1 != buffer2)
return buffer1 < buffer2;
buffer1 = data1.vertexBuffer->GetBuffer();
buffer2 = data2.vertexBuffer->GetBuffer();
if (buffer1 != buffer2)
return buffer1 < buffer2;
return data1.primitiveMode < data2.primitiveMode;
}