Merge pull request #27 from Gawaboumga/master
Merging Gawaboumga pull request (#27), fixes are coming Former-commit-id: 81079fd052538e15b7e919aea106cfb5a88a87a6
This commit is contained in:
commit
7103c28d49
|
|
@ -28,7 +28,7 @@ class NAZARA_API NzHashDigest
|
|||
|
||||
NzString ToHex() const;
|
||||
|
||||
nzUInt8 operator[](unsigned short pos) const;
|
||||
nzUInt8 operator[](unsigned int pos) const;
|
||||
|
||||
NzHashDigest& operator=(const NzHashDigest& rhs);
|
||||
NzHashDigest& operator=(NzHashDigest&& rhs) noexcept;
|
||||
|
|
@ -45,7 +45,7 @@ class NAZARA_API NzHashDigest
|
|||
private:
|
||||
NzString m_hashName;
|
||||
nzUInt8* m_digest;
|
||||
unsigned short m_digestLength;
|
||||
unsigned int m_digestLength;
|
||||
};
|
||||
|
||||
#endif // NAZARA_HASHDIGEST_HPP
|
||||
|
|
|
|||
|
|
@ -41,6 +41,7 @@
|
|||
#include <Nazara/Math/OrientedBox.hpp>
|
||||
#include <Nazara/Math/Plane.hpp>
|
||||
#include <Nazara/Math/Quaternion.hpp>
|
||||
#include <Nazara/Math/Ray.hpp>
|
||||
#include <Nazara/Math/Rect.hpp>
|
||||
#include <Nazara/Math/Sphere.hpp>
|
||||
#include <Nazara/Math/Vector2.hpp>
|
||||
|
|
|
|||
|
|
@ -83,9 +83,9 @@ template<typename T>
|
|||
template<typename U>
|
||||
void NzEulerAngles<T>::Set(const NzEulerAngles<U>& angles)
|
||||
{
|
||||
pitch = static_cast<T>(angles.pitch);
|
||||
yaw = static_cast<T>(angles.yaw);
|
||||
roll = static_cast<T>(angles.roll);
|
||||
pitch = F(angles.pitch);
|
||||
yaw = F(angles.yaw);
|
||||
roll = F(angles.roll);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (C) 2014 Jérôme Leclercq
|
||||
// Copyright (C) 2014 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
|
|
@ -38,6 +38,9 @@ class NzPlane
|
|||
NzString ToString() const;
|
||||
|
||||
static NzPlane Lerp(const NzPlane& from, const NzPlane& to, T interpolation);
|
||||
static NzPlane XY();
|
||||
static NzPlane XZ();
|
||||
static NzPlane YZ();
|
||||
|
||||
NzVector3<T> normal;
|
||||
T distance;
|
||||
|
|
|
|||
|
|
@ -152,6 +152,24 @@ NzPlane<T> NzPlane<T>::Lerp(const NzPlane& from, const NzPlane& to, T interpolat
|
|||
return plane;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzPlane<T> NzPlane<T>::XY()
|
||||
{
|
||||
return NzPlane<T>(F(0.0), F(0.0), F(1.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzPlane<T> NzPlane<T>::XZ()
|
||||
{
|
||||
return NzPlane<T>(F(0.0), F(1.0), F(0.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzPlane<T> NzPlane<T>::YZ()
|
||||
{
|
||||
return NzPlane<T>(F(1.0), F(0.0), F(0.0), F(0.0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const NzPlane<T>& plane)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -0,0 +1,69 @@
|
|||
// Copyright (C) 2014 Rémi Bèges - Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef NAZARA_RAY_HPP
|
||||
#define NAZARA_RAY_HPP
|
||||
|
||||
#include <Nazara/Core/String.hpp>
|
||||
#include <Nazara/Math/Box.hpp>
|
||||
#include <Nazara/Math/Frustum.hpp>
|
||||
#include <Nazara/Math/OrientedBox.hpp>
|
||||
#include <Nazara/Math/Plane.hpp>
|
||||
#include <Nazara/Math/Sphere.hpp>
|
||||
#include <Nazara/Math/Vector3.hpp>
|
||||
|
||||
template<typename T> class NzRay
|
||||
{
|
||||
public:
|
||||
NzRay() = default;
|
||||
NzRay(T X, T Y, T Z, T directionX, T directionY, T directionZ);
|
||||
NzRay(const T origin[3], const T direction[3]);
|
||||
NzRay(const NzVector3<T>& origin, const NzVector3<T>& direction);
|
||||
NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo);
|
||||
template<typename U> explicit NzRay(const NzVector3<U>& origin, const NzVector3<U>& direction);
|
||||
template<typename U> explicit NzRay(const NzRay<U>& ray);
|
||||
NzRay(const NzRay<T>& ray) = default;
|
||||
~NzRay() = default;
|
||||
|
||||
NzVector3<T> GetClosestPoint(const NzVector3<T>& point) const;
|
||||
NzVector3<T> GetPoint(T lambda) const;
|
||||
|
||||
bool Intersect(const NzBox<T>& box, NzVector3<T> * hitPoint = nullptr, NzVector3<T> * hitSecondPoint = nullptr) const;
|
||||
bool Intersect(const NzOrientedBox<T>& orientedBox, NzVector3<T> * hitPoint = nullptr, NzVector3<T> * hitSecondPoint = nullptr) const;
|
||||
bool Intersect(const NzPlane<T>& plane, NzVector3<T> * hitPoint = nullptr) const;
|
||||
bool Intersect(const NzSphere<T>& sphere, NzVector3<T> * hitPoint = nullptr, NzVector3<T> * hitSecondPoint = nullptr) const;
|
||||
|
||||
NzVector3<T> operator*(T lambda) const;
|
||||
|
||||
NzRay& Set(T X, T Y, T Z, T directionX, T directionY, T directionZ);
|
||||
NzRay& Set(const T origin[3], const T direction[3]);
|
||||
NzRay& Set(const NzVector3<T>& origin, const NzVector3<T>& direction);
|
||||
NzRay& Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo);
|
||||
template<typename U> NzRay& Set(const NzVector3<U>& origin, const NzVector3<U>& direction);
|
||||
template<typename U> NzRay& Set(const NzRay<U>& ray);
|
||||
NzRay& Set(const NzRay& ray);
|
||||
|
||||
NzRay& SetDirection(const NzVector3<T>& direction);
|
||||
NzRay& SetOrigin(const NzVector3<T>& origin);
|
||||
|
||||
NzString ToString() const;
|
||||
|
||||
static NzRay Lerp(const NzRay& from, const NzRay& to, T interpolation);
|
||||
static NzRay UnitX();
|
||||
static NzRay UnitY();
|
||||
static NzRay UnitZ();
|
||||
|
||||
NzVector3<T> direction, origin;
|
||||
};
|
||||
|
||||
template<typename T> std::ostream& operator<<(std::ostream& out, const NzRay<T>& vec);
|
||||
|
||||
typedef NzRay<double> NzRayd;
|
||||
typedef NzRay<float> NzRayf;
|
||||
|
||||
#include <Nazara/Math/Ray.inl>
|
||||
|
||||
#endif // NAZARA_RAY_HPP
|
||||
|
|
@ -0,0 +1,328 @@
|
|||
// Copyright (C) 2014 Jérôme Leclercq
|
||||
// This file is part of the "Nazara Engine - Mathematics module"
|
||||
// For conditions of distribution and use, see copyright notice in Config.hpp
|
||||
|
||||
#include <Nazara/Core/StringStream.hpp>
|
||||
#include <Nazara/Core/Debug.hpp>
|
||||
|
||||
#define F(a) static_cast<T>(a)
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>::NzRay(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
|
||||
{
|
||||
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>::NzRay(const T Origin[3], const T Direction[3])
|
||||
{
|
||||
Set(Origin, Direction);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>::NzRay(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
|
||||
{
|
||||
Set(Origin, Direction);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>::NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
|
||||
{
|
||||
Set(planeOne, planeTwo);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzRay<T>::NzRay(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
|
||||
{
|
||||
Set(Origin, Direction);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzRay<T>::NzRay(const NzRay<U>& ray)
|
||||
{
|
||||
Set(ray);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector3<T> NzRay<T>::GetClosestPoint(const NzVector3<T>& point) const
|
||||
{
|
||||
NzVector3<T> delta = point - origin;
|
||||
T vsq = direction.GetSquaredLength();
|
||||
T proj = delta.DotProduct(direction);
|
||||
|
||||
return GetPoint(proj/vsq);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
|
||||
{
|
||||
return NzVector3<T>(origin + direction * lambda);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzRay<T>::Intersect(const NzBox<T>& box, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
|
||||
{
|
||||
// Slab method
|
||||
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(direction.x, F(0.0)) || NzNumberEquals(direction.y, F(0.0)) || NzNumberEquals(direction.z, F(0.0)))
|
||||
{
|
||||
NazaraWarning("Division by zero !"); // The algorithm is still correct.
|
||||
}
|
||||
#endif
|
||||
|
||||
T tx1 = (box.x - origin.x) / direction.x;
|
||||
T tx2 = (box.x + box.width - origin.x) / direction.x;
|
||||
|
||||
T tmin = std::min(tx1, tx2);
|
||||
T tmax = std::max(tx1, tx2);
|
||||
|
||||
T ty1 = (box.y - origin.y) / direction.y;
|
||||
T ty2 = (box.y + box.height - origin.y) / direction.y;
|
||||
|
||||
tmin = std::max(tmin, std::min(ty1, ty2));
|
||||
tmax = std::min(tmax, std::max(ty1, ty2));
|
||||
|
||||
T tz1 = (box.z - origin.z) / direction.z;
|
||||
T tz2 = (box.z + box.depth - origin.z) / direction.z;
|
||||
|
||||
tmin = std::max(tmin, std::min(tz1, tz2));
|
||||
tmax = std::min(tmax, std::max(tz1, tz2));
|
||||
|
||||
if (hitPoint)
|
||||
hitPoint->Set(GetPoint(tmin));
|
||||
if (hitSecondPoint)
|
||||
hitSecondPoint->Set(GetPoint(tmax));
|
||||
|
||||
return tmax >= std::max(F(0.0), tmin) && tmin < INFINITY;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
|
||||
{
|
||||
NzVector3<T> width = (orientedBox.GetCorner(nzCorner_NearLeftBottom) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
|
||||
NzVector3<T> height = (orientedBox.GetCorner(nzCorner_FarLeftTop) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
|
||||
NzVector3<T> depth = (orientedBox.GetCorner(nzCorner_FarRightBottom) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
|
||||
|
||||
// Construction of the inverse of the matrix who did the rotation -> orthogonal matrix.
|
||||
NzMatrix4<T> transformation(width.x, height.x, depth.x, F(0.0),
|
||||
width.y, height.y, depth.y, F(0.0),
|
||||
width.z, height.z, depth.z, F(0.0),
|
||||
F(0.0), F(0.0), F(0.0), F(1.0));
|
||||
|
||||
// Reduction to aabb problem
|
||||
NzVector3<T> newOrigin = transformation.Transform(origin);
|
||||
NzVector3<T> newDirection = transformation.Transform(direction);
|
||||
|
||||
NzVector3<T> tmp, tmp2;
|
||||
if (NzRay<T>(newOrigin, newDirection).Intersect(NzBox<T>(orientedBox.GetCorner(nzCorner_NearRightTop), orientedBox.GetCorner(nzCorner_FarLeftBottom)), &tmp, &tmp2))
|
||||
{
|
||||
if (hitPoint)
|
||||
{
|
||||
transformation.Transpose();
|
||||
hitPoint->Set(transformation.Transform(tmp));
|
||||
if (hitSecondPoint)
|
||||
hitSecondPoint->Set(transformation.Transform(tmp2));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzRay<T>::Intersect(const NzPlane<T>& plane, NzVector3<T> * hitPoint) const
|
||||
{
|
||||
T divisor = plane.normal.DotProduct(direction);
|
||||
|
||||
if (NzNumberEquals(divisor, F(0.0)))
|
||||
return false; // perpendicular
|
||||
|
||||
if (!hitPoint)
|
||||
return true;
|
||||
|
||||
T lambda = - (plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax+by+cz=d
|
||||
hitPoint->Set(GetPoint(lambda));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
|
||||
{
|
||||
NzVector3<T> distanceCenterOrigin = sphere.GetPosition() - origin;
|
||||
T length = distanceCenterOrigin.DotProduct(direction);
|
||||
|
||||
if (length < F(0.0))
|
||||
return false; // ray is perpendicular to the vector origin - center
|
||||
|
||||
T squaredDistance = distanceCenterOrigin.GetSquaredLength() - length * length;
|
||||
|
||||
T squaredRadius = sphere.GetRadius() * sphere.GetRadius();
|
||||
|
||||
if (squaredDistance > squaredRadius)
|
||||
return false; // if the ray is further than the radius
|
||||
|
||||
if (!hitPoint)
|
||||
return true;
|
||||
|
||||
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
|
||||
|
||||
if (hitPoint)
|
||||
hitPoint->Set(GetPoint(length - deltaLambda));
|
||||
if (hitSecondPoint)
|
||||
hitSecondPoint->Set(GetPoint(length + deltaLambda));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector3<T> NzRay<T>::operator*(T lambda) const
|
||||
{
|
||||
return GetPoint(lambda);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
|
||||
{
|
||||
direction = NzVector3<T>(directionX, directionY, directionZ);
|
||||
origin = NzVector3<T>(X, Y, Z);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::Set(const T Origin[3], const T Direction[3])
|
||||
{
|
||||
direction = NzVector3<T>(Direction);
|
||||
origin = NzVector3<T>(Origin);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::Set(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
|
||||
{
|
||||
direction = Direction;
|
||||
origin = Origin;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
|
||||
{
|
||||
T termOne = planeOne.normal.GetLength();
|
||||
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
|
||||
T termFour = planeTwo.normal.GetLength();
|
||||
T det = termOne * termFour - termTwo * termTwo;
|
||||
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(det, F(0.0)))
|
||||
{
|
||||
|
||||
NzString error("Planes are parallel.");
|
||||
|
||||
NazaraError(error);
|
||||
throw std::domain_error(error);
|
||||
}
|
||||
#endif
|
||||
|
||||
T invdet = F(1.0) / det;
|
||||
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
|
||||
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
|
||||
|
||||
direction = planeOne.normal.CrossProduct(planeTwo.normal);
|
||||
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzRay<T>& NzRay<T>::Set(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
|
||||
{
|
||||
direction = NzVector3<T>(Direction);
|
||||
origin = NzVector3<T>(Origin);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<typename U>
|
||||
NzRay<T>& NzRay<T>::Set(const NzRay<U>& ray)
|
||||
{
|
||||
direction = NzVector3<T>(ray.direction);
|
||||
origin = NzVector3<T>(ray.origin);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::Set(const NzRay& ray)
|
||||
{
|
||||
std::memcpy(this, &ray, sizeof(NzRay));
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::SetDirection(const NzVector3<T>& Direction)
|
||||
{
|
||||
direction = Direction;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T>& NzRay<T>::SetOrigin(const NzVector3<T>& Origin)
|
||||
{
|
||||
origin = Origin;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzString NzRay<T>::ToString() const
|
||||
{
|
||||
NzStringStream ss;
|
||||
|
||||
return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")";
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T> NzRay<T>::Lerp(const NzRay& from, const NzRay& to, T interpolation)
|
||||
{
|
||||
return NzRay<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T> NzRay<T>::UnitX()
|
||||
{
|
||||
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitX());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T> NzRay<T>::UnitY()
|
||||
{
|
||||
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitY());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzRay<T> NzRay<T>::UnitZ()
|
||||
{
|
||||
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitZ());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const NzRay<T>& ray)
|
||||
{
|
||||
return out << ray.ToString();
|
||||
}
|
||||
|
||||
#undef F
|
||||
|
||||
#include <Nazara/Core/DebugOff.hpp>
|
||||
|
|
@ -117,6 +117,7 @@ NzVector3<T> NzSphere<T>::GetPositiveVertex(const NzVector3<T>& normal) const
|
|||
|
||||
return pos;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool NzSphere<T>::Intersect(const NzBox<T>& box) const
|
||||
{
|
||||
|
|
|
|||
|
|
@ -23,6 +23,8 @@ class NzVector2
|
|||
|
||||
T AbsDotProduct(const NzVector2& vec) const;
|
||||
|
||||
T AngleBetween(const NzVector2& vec, bool toDegree = true) const;
|
||||
|
||||
T Distance(const NzVector2& vec) const;
|
||||
float Distancef(const NzVector2& vec) const;
|
||||
|
||||
|
|
|
|||
|
|
@ -54,6 +54,15 @@ inline unsigned int NzVector2<unsigned int>::AbsDotProduct(const NzVector2<unsig
|
|||
return std::labs(x * vec.x) + std::labs(y * vec.y);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::AngleBetween(const NzVector2& vec, bool toDegree) const
|
||||
{
|
||||
if (toDegree)
|
||||
return NzRadianToDegree(std::atan2(vec.y, vec.x) - std::atan2(y, x));
|
||||
else
|
||||
return std::atan2(vec.y, vec.x) - std::atan2(y, x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector2<T>::Distance(const NzVector2& vec) const
|
||||
{
|
||||
|
|
|
|||
|
|
@ -24,6 +24,8 @@ template<typename T> class NzVector3
|
|||
|
||||
T AbsDotProduct(const NzVector3& vec) const;
|
||||
|
||||
T AngleBetween(const NzVector3& vec, bool toDegree = true) const;
|
||||
|
||||
NzVector3 CrossProduct(const NzVector3& vec) const;
|
||||
|
||||
T Distance(const NzVector3& vec) const;
|
||||
|
|
|
|||
|
|
@ -60,6 +60,30 @@ inline unsigned int NzVector3<unsigned int>::AbsDotProduct(const NzVector3<unsig
|
|||
return std::labs(x * vec.x) + std::labs(y * vec.y) + std::labs(z * vec.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzVector3<T>::AngleBetween(const NzVector3& vec, bool toDegree) const
|
||||
{
|
||||
T alpha = DotProduct(vec);
|
||||
T divisor = (GetLength() * vec.GetLength());
|
||||
|
||||
#if NAZARA_MATH_SAFE
|
||||
if (NzNumberEquals(divisor, F(0.0)))
|
||||
{
|
||||
NzString error("Division by zero");
|
||||
|
||||
NazaraError(error);
|
||||
throw std::domain_error(error);
|
||||
}
|
||||
#endif
|
||||
|
||||
alpha /= divisor;
|
||||
|
||||
if (toDegree)
|
||||
return NzRadianToDegree(std::acos(NzClamp(alpha, F(-1.0), F(1.0))));
|
||||
else
|
||||
return std::acos(NzClamp(alpha, F(-1.0), F(1.0)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzVector3<T> NzVector3<T>::CrossProduct(const NzVector3& vec) const
|
||||
{
|
||||
|
|
|
|||
|
|
@ -89,7 +89,7 @@ NzString NzHashDigest::ToHex() const
|
|||
return NzString(new NzString::SharedString(1, length, length, hexOutput));
|
||||
}
|
||||
|
||||
nzUInt8 NzHashDigest::operator[](unsigned short pos) const
|
||||
nzUInt8 NzHashDigest::operator[](unsigned int pos) const
|
||||
{
|
||||
#if NAZARA_CORE_SAFE
|
||||
if (pos >= m_digestLength)
|
||||
|
|
|
|||
|
|
@ -17,6 +17,9 @@ namespace
|
|||
case nzPrimitiveType_Box:
|
||||
return new NzBoxGeom(physWorld, primitive.box.lengths, primitive.matrix);
|
||||
|
||||
case nzPrimitiveType_Cone:
|
||||
return new NzConeGeom(physWorld, primitive.cone.length, primitive.cone.radius, primitive.matrix);
|
||||
|
||||
case nzPrimitiveType_Plane:
|
||||
return new NzBoxGeom(physWorld, NzVector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
|
||||
///TODO: PlaneGeom?
|
||||
|
|
|
|||
Loading…
Reference in New Issue